Answer
Verified
391.5k+ views
Hint: Here, we need to find the measure of each exterior angle of a regular decagon. Now, a regular decagon has 10 sides and 10 angles and all these angles and sides are equal. The formula used to find the interior angle and exterior angle of a regular decagon is
$ \to $Interior angle$ = 180 - $exterior angle
$ \to $Exterior angle $ = \dfrac{{360}}{n}$
Complete step-by-step solution:
In this question, we are supposed to find the measure of each exterior angle of a regular decagon.
First of all, what is the shape of the shape of a regular decagon?
A regular decagon has the following shape.
Decagon has ten sides and ten angles.
All these sides and angles are equal to each other.
As a decagon has 10 sides, the formula for exterior angle is given by
$ \to $Exterior angle $ = \dfrac{{360}}{n} = \dfrac{{360}}{{10}} = 36^\circ $
Therefore, the measure of each exterior angle of a regular decagon is $36^\circ $.
Note: The difference between regular decagon and irregular decagon is that regular decagon has all the sides and angles equal and an irregular decagon has irregular sides and angles that means different sides and different angles.
Now, the formula to find the interior angle of a regular decagon is given by
$ \to $Interior angle$ = 180 - $exterior angle.
Now, as we found that each exterior angle of a regular decagon is 36, its interior angle will be
$ \to $Interior angle$ = 180 - 36 = 144^\circ $
Hence, a regular decagon has each exterior angle $36^\circ $ and each interior angle as $144^\circ $.
$ \to $Interior angle$ = 180 - $exterior angle
$ \to $Exterior angle $ = \dfrac{{360}}{n}$
Complete step-by-step solution:
In this question, we are supposed to find the measure of each exterior angle of a regular decagon.
First of all, what is the shape of the shape of a regular decagon?
A regular decagon has the following shape.
Decagon has ten sides and ten angles.
All these sides and angles are equal to each other.
As a decagon has 10 sides, the formula for exterior angle is given by
$ \to $Exterior angle $ = \dfrac{{360}}{n} = \dfrac{{360}}{{10}} = 36^\circ $
Therefore, the measure of each exterior angle of a regular decagon is $36^\circ $.
Note: The difference between regular decagon and irregular decagon is that regular decagon has all the sides and angles equal and an irregular decagon has irregular sides and angles that means different sides and different angles.
Now, the formula to find the interior angle of a regular decagon is given by
$ \to $Interior angle$ = 180 - $exterior angle.
Now, as we found that each exterior angle of a regular decagon is 36, its interior angle will be
$ \to $Interior angle$ = 180 - 36 = 144^\circ $
Hence, a regular decagon has each exterior angle $36^\circ $ and each interior angle as $144^\circ $.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is BLO What is the full form of BLO class 8 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE