
Find the modulus of the complex number \[Z = 2 + 3i\].
Answer
520.5k+ views
Hint:Let \[Z = a + bi\] be a complex number. Then, the modulus of a complex number $Z$ , denoted by $\left| Z \right|$ , is defined to be the non-negative real number $\left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} $.
Complete step-by-step answer:
Given, complex number \[Z = 2 + 3i\] .
Real part of complex number $Z$ is $\operatorname{Re} \left( Z \right) = a = 2$ .
Imaginary part of complex number $Z$ is $\operatorname{Im} \left( Z \right) = b = 3$ .
Now, we apply the formula of modulus of complex number $Z$ .
$\left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} $
Put the value of a and b in the above formula.
\[
\Rightarrow \left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} \\
\Rightarrow \left| Z \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2}} \\
\Rightarrow \left| Z \right| = \sqrt {4 + 9} \\
\Rightarrow \left| Z \right| = \sqrt {13} \\
\]
So, the modulus of complex number \[Z = 2 + 3i\] is \[\sqrt {13} \] .
Note: Whenever we face such types of problems we use some important points. First we find real and imaginary parts of complex numbers then apply the formula of modulus of complex number then after solving we can get the required answer.
Complete step-by-step answer:
Given, complex number \[Z = 2 + 3i\] .
Real part of complex number $Z$ is $\operatorname{Re} \left( Z \right) = a = 2$ .
Imaginary part of complex number $Z$ is $\operatorname{Im} \left( Z \right) = b = 3$ .
Now, we apply the formula of modulus of complex number $Z$ .
$\left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} $
Put the value of a and b in the above formula.
\[
\Rightarrow \left| Z \right| = \sqrt {{{\left( {\operatorname{Re} \left( z \right)} \right)}^2} + {{\left( {\operatorname{Im} \left( z \right)} \right)}^2}} = \sqrt {{a^2} + {b^2}} \\
\Rightarrow \left| Z \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2}} \\
\Rightarrow \left| Z \right| = \sqrt {4 + 9} \\
\Rightarrow \left| Z \right| = \sqrt {13} \\
\]
So, the modulus of complex number \[Z = 2 + 3i\] is \[\sqrt {13} \] .
Note: Whenever we face such types of problems we use some important points. First we find real and imaginary parts of complex numbers then apply the formula of modulus of complex number then after solving we can get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

