Find the multiplicative inverse of the complex numbers given.
\[\left( {4 - 3i} \right)\]
Answer
Verified
509.4k+ views
Hint- If Z is a complex number, and then the multiplicative inverse of the complex number is given by
${z^{ - 1}} = \overline {\dfrac{z}{{{{\left| z \right|}^2}}}} $ . Where z is a complex number of the form \[a + ib\] and its conjugate is \[a - ib\] .
Complete step-by-step solution -
Let $z = 4 - 3i$
As we know that to find the conjugate of a number, we replace i by –i.
Then $\overline z = 4 + 3i$
Now, we have to find the magnitude of z
As we know that if \[z{\text{ }} = a + ib\] then ,
$\left| z \right| = \sqrt {{a^2} + {b^2}} $
$
\therefore \left| z \right| = \sqrt {{4^2} + {{( - 3)}^2}} \\
\Rightarrow \left| z \right| = \sqrt {16 + 9} \\
\Rightarrow \left| z \right| = 5 \\
$
Therefore, the multiplicative inverse of z is given by
${z^{ - 1}} = \overline {\dfrac{z}{{{{\left| z \right|}^2}}}} $
Substituting the value of $\overline z {\text{ and }}\left| z \right|$ in the above equation, we get
\[
\Rightarrow {z^{ - 1}} = \dfrac{{4 + 3i}}{{{5^2}}} \\
\Rightarrow {z^{ - 1}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i \\
\]
Hence, the multiplicative inverse of z is \[{z^{ - 1}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i\] .
Note- The number in the form of \[a + ib\] is known as complex numbers where a is the real part and b is the imaginary part. The above question can also be solved by writing the \[a + ib\] in reciprocal form and multiply and divide it with the conjugate of \[a + ib\] . After simplifying we will get the multiplicative inverse of the given complex number. The same way we do with the real numbers.
${z^{ - 1}} = \overline {\dfrac{z}{{{{\left| z \right|}^2}}}} $ . Where z is a complex number of the form \[a + ib\] and its conjugate is \[a - ib\] .
Complete step-by-step solution -
Let $z = 4 - 3i$
As we know that to find the conjugate of a number, we replace i by –i.
Then $\overline z = 4 + 3i$
Now, we have to find the magnitude of z
As we know that if \[z{\text{ }} = a + ib\] then ,
$\left| z \right| = \sqrt {{a^2} + {b^2}} $
$
\therefore \left| z \right| = \sqrt {{4^2} + {{( - 3)}^2}} \\
\Rightarrow \left| z \right| = \sqrt {16 + 9} \\
\Rightarrow \left| z \right| = 5 \\
$
Therefore, the multiplicative inverse of z is given by
${z^{ - 1}} = \overline {\dfrac{z}{{{{\left| z \right|}^2}}}} $
Substituting the value of $\overline z {\text{ and }}\left| z \right|$ in the above equation, we get
\[
\Rightarrow {z^{ - 1}} = \dfrac{{4 + 3i}}{{{5^2}}} \\
\Rightarrow {z^{ - 1}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i \\
\]
Hence, the multiplicative inverse of z is \[{z^{ - 1}} = \dfrac{4}{{25}} + \dfrac{3}{{25}}i\] .
Note- The number in the form of \[a + ib\] is known as complex numbers where a is the real part and b is the imaginary part. The above question can also be solved by writing the \[a + ib\] in reciprocal form and multiply and divide it with the conjugate of \[a + ib\] . After simplifying we will get the multiplicative inverse of the given complex number. The same way we do with the real numbers.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE