
Find the ${{n}^{th}}$ term of the series $1+3+7+13+21+......$ and hence find the sum of first n terms?
Answer
520.5k+ views
Hint: We first try to find the ${{n}^{th}}$ term of the series using the subtraction form of the terms. In that case, we subtract shifting one term on the right side. We find the term form in general and then using the formulas of \[\sum\limits_{p=1}^{n}{{{p}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6},\sum\limits_{p=1}^{n}{p}=\dfrac{n\left( n+1 \right)}{2}\] we find sum.
Complete step by step solution:
We have been given $1+3+7+13+21+......$. This is AGM progression.
We assume its ${{n}^{th}}$ term as ${{t}_{n}}$. So, $1+3+7+13+21+......+{{t}_{n}}$
We assume the sum as $S=1+3+7+13+21+......+{{t}_{n}}$.
We apply one particular trick to subtract S from S in a particular way taking crosswise subtraction as
$\begin{align}
& S=1+3+7+13+21+......+{{t}_{n}} \\
& \underline{S=1+3+7+13+21+......+{{t}_{n}}} \\
& 0=1+\left( 3-1 \right)+\left( 7-3 \right)+\left( 13-7 \right)+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)-{{t}_{n}} \\
\end{align}$
The series has $n$ terms. The simplified form is $1+2+4+6+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)-{{t}_{n}}=0$.
So, ${{t}_{n}}=1+2+4+6+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)$ and it has n terms. This series is an AP.
We use the known summation forms like \[\sum\limits_{p=1}^{n}{{{p}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6},\sum\limits_{p=1}^{n}{p}=\dfrac{n\left( n+1 \right)}{2}\].
The sum will be ${{t}_{n}}=1+2+4+6+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)=1+\sum\limits_{r=1}^{n-1}{2r}=1+n\left( n-1 \right)$.
The terms will be in the form of ${{t}_{n}}=1+n\left( n-1 \right)={{n}^{2}}-n+1$ putting values $n=1,2,3...$
So, we get \[S=1+3+7+13+21+......+{{t}_{n}}=\sum{{{n}^{2}}-n+1}=\sum\limits_{k=1}^{n}{{{k}^{2}}-k+1}\]
The summation gives us \[S=\sum\limits_{k=1}^{n}{{{k}^{2}}-k+1}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}-\dfrac{n\left( n+1 \right)}{2}+n\].
Now we need to simplify the summation and get
\[\begin{align}
& \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}-\dfrac{n\left( n+1 \right)}{2}+n \\
& =\dfrac{n\left( n+1 \right)\left( 2n+1-3 \right)}{6}+n \\
& =\dfrac{n\left( {{n}^{2}}-1 \right)}{3}+n \\
& =\dfrac{n}{3}\left( {{n}^{2}}+2 \right) \\
\end{align}\]
Therefore, the ${{n}^{th}}$ term of the series $1+3+7+13+21+......$ is ${{t}_{n}}={{n}^{2}}-n+1$ and the sum of first n terms is \[\dfrac{n}{3}\left( {{n}^{2}}+2 \right)\].
Note:
This special form of subtraction is done to get the ${{t}_{n}}$ in negative form with the number of terms in that subtraction being equal to the number of terms in the main series. The summation forms of \[\sum\limits_{p=1}^{n}{{{p}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6},\sum\limits_{p=1}^{n}{p}=\dfrac{n\left( n+1 \right)}{2}\] comes from that too.
Complete step by step solution:
We have been given $1+3+7+13+21+......$. This is AGM progression.
We assume its ${{n}^{th}}$ term as ${{t}_{n}}$. So, $1+3+7+13+21+......+{{t}_{n}}$
We assume the sum as $S=1+3+7+13+21+......+{{t}_{n}}$.
We apply one particular trick to subtract S from S in a particular way taking crosswise subtraction as
$\begin{align}
& S=1+3+7+13+21+......+{{t}_{n}} \\
& \underline{S=1+3+7+13+21+......+{{t}_{n}}} \\
& 0=1+\left( 3-1 \right)+\left( 7-3 \right)+\left( 13-7 \right)+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)-{{t}_{n}} \\
\end{align}$
The series has $n$ terms. The simplified form is $1+2+4+6+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)-{{t}_{n}}=0$.
So, ${{t}_{n}}=1+2+4+6+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)$ and it has n terms. This series is an AP.
We use the known summation forms like \[\sum\limits_{p=1}^{n}{{{p}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6},\sum\limits_{p=1}^{n}{p}=\dfrac{n\left( n+1 \right)}{2}\].
The sum will be ${{t}_{n}}=1+2+4+6+......+\left( {{t}_{n}}-{{t}_{n-1}} \right)=1+\sum\limits_{r=1}^{n-1}{2r}=1+n\left( n-1 \right)$.
The terms will be in the form of ${{t}_{n}}=1+n\left( n-1 \right)={{n}^{2}}-n+1$ putting values $n=1,2,3...$
So, we get \[S=1+3+7+13+21+......+{{t}_{n}}=\sum{{{n}^{2}}-n+1}=\sum\limits_{k=1}^{n}{{{k}^{2}}-k+1}\]
The summation gives us \[S=\sum\limits_{k=1}^{n}{{{k}^{2}}-k+1}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}-\dfrac{n\left( n+1 \right)}{2}+n\].
Now we need to simplify the summation and get
\[\begin{align}
& \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}-\dfrac{n\left( n+1 \right)}{2}+n \\
& =\dfrac{n\left( n+1 \right)\left( 2n+1-3 \right)}{6}+n \\
& =\dfrac{n\left( {{n}^{2}}-1 \right)}{3}+n \\
& =\dfrac{n}{3}\left( {{n}^{2}}+2 \right) \\
\end{align}\]
Therefore, the ${{n}^{th}}$ term of the series $1+3+7+13+21+......$ is ${{t}_{n}}={{n}^{2}}-n+1$ and the sum of first n terms is \[\dfrac{n}{3}\left( {{n}^{2}}+2 \right)\].
Note:
This special form of subtraction is done to get the ${{t}_{n}}$ in negative form with the number of terms in that subtraction being equal to the number of terms in the main series. The summation forms of \[\sum\limits_{p=1}^{n}{{{p}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6},\sum\limits_{p=1}^{n}{p}=\dfrac{n\left( n+1 \right)}{2}\] comes from that too.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

