Answer
Verified
430.5k+ views
Hint: In order to determine the second derivative of $\ln \left( {{x^2} + 1} \right)$, we will consider it as $y$. Then determine the first derivative using $\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^n} = n{x^{x - 1}}$. And, we will determine the second derivative using $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.\dfrac{d}{{du}}\left( u \right) - u.\dfrac{d}{{dv}}\left( v \right)}}{{{v^2}}}$.
Complete step-by-step solution:
We need to determine the second derivative of $\ln \left( {{x^2} + 1} \right)$.
Let us consider $y = \ln \left( {{x^2} + 1} \right)$,
Now, let us differentiate $y$ with respect to $x$.
We know that $\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^n} = n{x^{x - 1}}$
Thus, we have,
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\ln \left( {{x^2} + 1} \right)$
$\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}}$
Therefore, let us find the second derivative of $y$ with respect to $x$.
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{d}{{dx}}\left( {\dfrac{{2x}}{{{x^2} + 1}}} \right)$
We know that $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.\dfrac{d}{{du}}\left( u \right) - u.\dfrac{d}{{dv}}\left( v \right)}}{{{v^2}}}$
Thus, we have,
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{{x^2} + 1.\dfrac{d}{{dx}}\left( {2x} \right) - 2x.\dfrac{d}{{dx}}\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2\left( {{x^2} + 1} \right) - 2x\left( {2x} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2{x^2} + 2 - 4{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
Hence, the second derivative of $y = \ln \left( {{x^2} + 1} \right)$is $\dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$.
Note: A differential equation is an equation with a function and one or more of its derivatives or differentials. $dy$ means an infinitely small change in $y$. $dx$ means an infinitely small change in $x$. Integrating factor technique is used when the differential equation is of the form $\dfrac{{dy}}{{dx}} + p\left( x \right)y = q\left( x \right)$ where $p$ and $q$ are both functions of $x$ only. First-order differential equation is of the form $\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)$ where $P$ and $Q$ are both functions of $x$ and the first derivative of $y$. The order of the differential equation is the order of the highest order derivative present in the equation. The degree of the differential equation is the power of the highest order derivative, where the original equation is represented in the form of a polynomial equation in derivatives such as $\dfrac{{dy}}{{dx}},\,\dfrac{{{d^2}y}}{{d{x^2}}},\,\dfrac{{{d^3}y}}{{d{x^3}}} \ldots $
In our world things change, and describing how they change often ends up as a differential equation. Differential equations can describe how populations change, how heat moves, how springs vibrate, how radioactive material decays and much more. They are a very natural way to describe many things in the universe.
Complete step-by-step solution:
We need to determine the second derivative of $\ln \left( {{x^2} + 1} \right)$.
Let us consider $y = \ln \left( {{x^2} + 1} \right)$,
Now, let us differentiate $y$ with respect to $x$.
We know that $\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^n} = n{x^{x - 1}}$
Thus, we have,
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\ln \left( {{x^2} + 1} \right)$
$\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}}$
Therefore, let us find the second derivative of $y$ with respect to $x$.
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{d}{{dx}}\left( {\dfrac{{2x}}{{{x^2} + 1}}} \right)$
We know that $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.\dfrac{d}{{du}}\left( u \right) - u.\dfrac{d}{{dv}}\left( v \right)}}{{{v^2}}}$
Thus, we have,
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{{x^2} + 1.\dfrac{d}{{dx}}\left( {2x} \right) - 2x.\dfrac{d}{{dx}}\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2\left( {{x^2} + 1} \right) - 2x\left( {2x} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2{x^2} + 2 - 4{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
Hence, the second derivative of $y = \ln \left( {{x^2} + 1} \right)$is $\dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$.
Note: A differential equation is an equation with a function and one or more of its derivatives or differentials. $dy$ means an infinitely small change in $y$. $dx$ means an infinitely small change in $x$. Integrating factor technique is used when the differential equation is of the form $\dfrac{{dy}}{{dx}} + p\left( x \right)y = q\left( x \right)$ where $p$ and $q$ are both functions of $x$ only. First-order differential equation is of the form $\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)$ where $P$ and $Q$ are both functions of $x$ and the first derivative of $y$. The order of the differential equation is the order of the highest order derivative present in the equation. The degree of the differential equation is the power of the highest order derivative, where the original equation is represented in the form of a polynomial equation in derivatives such as $\dfrac{{dy}}{{dx}},\,\dfrac{{{d^2}y}}{{d{x^2}}},\,\dfrac{{{d^3}y}}{{d{x^3}}} \ldots $
In our world things change, and describing how they change often ends up as a differential equation. Differential equations can describe how populations change, how heat moves, how springs vibrate, how radioactive material decays and much more. They are a very natural way to describe many things in the universe.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE