Answer
Verified
429.9k+ views
Hint: In order to determine the second derivative of $\ln \left( {{x^2} + 1} \right)$, we will consider it as $y$. Then determine the first derivative using $\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^n} = n{x^{x - 1}}$. And, we will determine the second derivative using $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.\dfrac{d}{{du}}\left( u \right) - u.\dfrac{d}{{dv}}\left( v \right)}}{{{v^2}}}$.
Complete step-by-step solution:
We need to determine the second derivative of $\ln \left( {{x^2} + 1} \right)$.
Let us consider $y = \ln \left( {{x^2} + 1} \right)$,
Now, let us differentiate $y$ with respect to $x$.
We know that $\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^n} = n{x^{x - 1}}$
Thus, we have,
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\ln \left( {{x^2} + 1} \right)$
$\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}}$
Therefore, let us find the second derivative of $y$ with respect to $x$.
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{d}{{dx}}\left( {\dfrac{{2x}}{{{x^2} + 1}}} \right)$
We know that $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.\dfrac{d}{{du}}\left( u \right) - u.\dfrac{d}{{dv}}\left( v \right)}}{{{v^2}}}$
Thus, we have,
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{{x^2} + 1.\dfrac{d}{{dx}}\left( {2x} \right) - 2x.\dfrac{d}{{dx}}\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2\left( {{x^2} + 1} \right) - 2x\left( {2x} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2{x^2} + 2 - 4{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
Hence, the second derivative of $y = \ln \left( {{x^2} + 1} \right)$is $\dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$.
Note: A differential equation is an equation with a function and one or more of its derivatives or differentials. $dy$ means an infinitely small change in $y$. $dx$ means an infinitely small change in $x$. Integrating factor technique is used when the differential equation is of the form $\dfrac{{dy}}{{dx}} + p\left( x \right)y = q\left( x \right)$ where $p$ and $q$ are both functions of $x$ only. First-order differential equation is of the form $\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)$ where $P$ and $Q$ are both functions of $x$ and the first derivative of $y$. The order of the differential equation is the order of the highest order derivative present in the equation. The degree of the differential equation is the power of the highest order derivative, where the original equation is represented in the form of a polynomial equation in derivatives such as $\dfrac{{dy}}{{dx}},\,\dfrac{{{d^2}y}}{{d{x^2}}},\,\dfrac{{{d^3}y}}{{d{x^3}}} \ldots $
In our world things change, and describing how they change often ends up as a differential equation. Differential equations can describe how populations change, how heat moves, how springs vibrate, how radioactive material decays and much more. They are a very natural way to describe many things in the universe.
Complete step-by-step solution:
We need to determine the second derivative of $\ln \left( {{x^2} + 1} \right)$.
Let us consider $y = \ln \left( {{x^2} + 1} \right)$,
Now, let us differentiate $y$ with respect to $x$.
We know that $\dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}$ and $\dfrac{d}{{dx}}{x^n} = n{x^{x - 1}}$
Thus, we have,
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\ln \left( {{x^2} + 1} \right)$
$\dfrac{{dy}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}}$
Therefore, let us find the second derivative of $y$ with respect to $x$.
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{d}{{dx}}\left( {\dfrac{{2x}}{{{x^2} + 1}}} \right)$
We know that $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.\dfrac{d}{{du}}\left( u \right) - u.\dfrac{d}{{dv}}\left( v \right)}}{{{v^2}}}$
Thus, we have,
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{{x^2} + 1.\dfrac{d}{{dx}}\left( {2x} \right) - 2x.\dfrac{d}{{dx}}\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2\left( {{x^2} + 1} \right) - 2x\left( {2x} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2{x^2} + 2 - 4{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
$\dfrac{{d{y^2}}}{{{d^2}x}} = \dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$
Hence, the second derivative of $y = \ln \left( {{x^2} + 1} \right)$is $\dfrac{{2 - 2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}$.
Note: A differential equation is an equation with a function and one or more of its derivatives or differentials. $dy$ means an infinitely small change in $y$. $dx$ means an infinitely small change in $x$. Integrating factor technique is used when the differential equation is of the form $\dfrac{{dy}}{{dx}} + p\left( x \right)y = q\left( x \right)$ where $p$ and $q$ are both functions of $x$ only. First-order differential equation is of the form $\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)$ where $P$ and $Q$ are both functions of $x$ and the first derivative of $y$. The order of the differential equation is the order of the highest order derivative present in the equation. The degree of the differential equation is the power of the highest order derivative, where the original equation is represented in the form of a polynomial equation in derivatives such as $\dfrac{{dy}}{{dx}},\,\dfrac{{{d^2}y}}{{d{x^2}}},\,\dfrac{{{d^3}y}}{{d{x^3}}} \ldots $
In our world things change, and describing how they change often ends up as a differential equation. Differential equations can describe how populations change, how heat moves, how springs vibrate, how radioactive material decays and much more. They are a very natural way to describe many things in the universe.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE