Answer
Verified
449.4k+ views
Hint: $0.02=\dfrac{2}{100}\Rightarrow \sqrt{0.02}=\sqrt{\dfrac{2}{100}}=\dfrac{\sqrt{2}}{10}$ .
The nearest perfect square numbers to 2 are 1 and 4.
$\sqrt{1}<\sqrt{2}<\sqrt{4}$ ⇒ $1<\sqrt{2}<2$
We can use either the method of long division, binomial expansion or calculus to find the square root of 2.
Complete step-by-step answer:
Since, $0.01<0.02<0.04$ , we can say that $\sqrt{0.01}<\sqrt{0.02}<\sqrt{0.04}$ or $0.1<\sqrt{0.02}<0.2$ .
Let us use differentiation (calculus) to find the value of $\sqrt{0.02}$ .
Let's say $y=f(x)=\sqrt{x}$ is a function of x.
For a change of Δx in the value of x, let's say that the value of y changes by Δy.
⇒ y + Δy = f(x + Δx)
We know that $f\left( 0.01 \right)=\sqrt{0.01}=1$ .
∴ f(0.02) = f(0.01 + 0.01) which means that the change Δx = 0.01.
We also know that for small values of Δx and Δy, $\dfrac{\Delta y}{\Delta x}\approx \dfrac{dy}{dx}$ .
Now, $\dfrac{\Delta y}{\Delta x}=\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \sqrt{x} \right)$ .
Using the definition that roots are fractional powers ( $ {{x}^{\dfrac{p}{q}}}=\sqrt[q]{{{x}^{p}}}$ ):
$\dfrac{\Delta y}{\Delta x}=\dfrac{d}{dx}\left( \sqrt{x} \right)=\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)$
And using the formula of derivatives $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} $ , we get:
⇒ $\dfrac{\Delta y}{\Delta x}=\dfrac{1}{2}{{x}^{\left( \dfrac{1}{2}-1 \right)}}=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}}$
Substituting x = 0.01 and Δx = 0.01, we get:
$\dfrac{\Delta y}{0.01}=\dfrac{1}{2}{{(0.01)}^{\dfrac{-1}{2}}}$
Using the meaning of negative powers $ {{a}^{-x}}=\dfrac{1}{{{a}^{x}}}$ , we get:
⇒ $\dfrac{\Delta y}{0.01}=\dfrac{1}{2}\times \dfrac{1}{\sqrt{0.01}}$
⇒ $\Delta y=\dfrac{1}{2}\times \dfrac{1}{0.1}\times 0.01$
⇒ Δy = 0.05
Finally, since y + Δy = f(x + Δx), we can say that:
$\sqrt{0.02}=f(0.02)=f(0.01+0.01)=f(0.01)+\Delta y$
Substituting the values f(0.01) = 0.1 and Δy = 0.05, we get:
$\sqrt{0.02}=0.1+0.05=0.15$ .
Hence, the value of the square root of 0.02 is approximately 0.15.
Note: The smaller the value of Δx, the better the approximation.
This process can be repeated infinitely many times to get a closer value of the function at a given point.
The nearest perfect square numbers to 2 are 1 and 4.
$\sqrt{1}<\sqrt{2}<\sqrt{4}$ ⇒ $1<\sqrt{2}<2$
We can use either the method of long division, binomial expansion or calculus to find the square root of 2.
Complete step-by-step answer:
Since, $0.01<0.02<0.04$ , we can say that $\sqrt{0.01}<\sqrt{0.02}<\sqrt{0.04}$ or $0.1<\sqrt{0.02}<0.2$ .
Let us use differentiation (calculus) to find the value of $\sqrt{0.02}$ .
Let's say $y=f(x)=\sqrt{x}$ is a function of x.
For a change of Δx in the value of x, let's say that the value of y changes by Δy.
⇒ y + Δy = f(x + Δx)
We know that $f\left( 0.01 \right)=\sqrt{0.01}=1$ .
∴ f(0.02) = f(0.01 + 0.01) which means that the change Δx = 0.01.
We also know that for small values of Δx and Δy, $\dfrac{\Delta y}{\Delta x}\approx \dfrac{dy}{dx}$ .
Now, $\dfrac{\Delta y}{\Delta x}=\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \sqrt{x} \right)$ .
Using the definition that roots are fractional powers ( $ {{x}^{\dfrac{p}{q}}}=\sqrt[q]{{{x}^{p}}}$ ):
$\dfrac{\Delta y}{\Delta x}=\dfrac{d}{dx}\left( \sqrt{x} \right)=\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)$
And using the formula of derivatives $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} $ , we get:
⇒ $\dfrac{\Delta y}{\Delta x}=\dfrac{1}{2}{{x}^{\left( \dfrac{1}{2}-1 \right)}}=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}}$
Substituting x = 0.01 and Δx = 0.01, we get:
$\dfrac{\Delta y}{0.01}=\dfrac{1}{2}{{(0.01)}^{\dfrac{-1}{2}}}$
Using the meaning of negative powers $ {{a}^{-x}}=\dfrac{1}{{{a}^{x}}}$ , we get:
⇒ $\dfrac{\Delta y}{0.01}=\dfrac{1}{2}\times \dfrac{1}{\sqrt{0.01}}$
⇒ $\Delta y=\dfrac{1}{2}\times \dfrac{1}{0.1}\times 0.01$
⇒ Δy = 0.05
Finally, since y + Δy = f(x + Δx), we can say that:
$\sqrt{0.02}=f(0.02)=f(0.01+0.01)=f(0.01)+\Delta y$
Substituting the values f(0.01) = 0.1 and Δy = 0.05, we get:
$\sqrt{0.02}=0.1+0.05=0.15$ .
Hence, the value of the square root of 0.02 is approximately 0.15.
Note: The smaller the value of Δx, the better the approximation.
This process can be repeated infinitely many times to get a closer value of the function at a given point.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE