Answer
Verified
468.3k+ views
Hint: Let $S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$. Simplify the equation by adding 1 on both sides. Use the expansion \[{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....\] and compare its RHS with that of S to get the value of x and hence find the value of S.
Complete step by step solution:
We have an infinite series $\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
We need to find the sum of this series.
Let’s call the sum as S.
Then we have $S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....(1)$
We will simplify the above expression by adding 1 on both the sides of the equation.
Thus, we have
$1 + S = 1 + \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
Now, RHS can be expressed as follows:
$1 + S = 1 + \dfrac{3}{{1!}}.(\dfrac{1}{4}) + \dfrac{{3.5}}{{2!}}.{(\dfrac{1}{4})^2} + \dfrac{{3.5.7}}{{3!}}.{(\dfrac{1}{4})^3} + ....(1)$
Consider the expansion of${(1 - x)^{ - \dfrac{p}{q}}}$
\[{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....\]
Comparing (1) with the expansion, we get $p = 3$ and $p + q = 5$.
$ \Rightarrow q = 2$.
Also $\dfrac{x}{q} = \dfrac{1}{4} \Rightarrow x = \dfrac{1}{2}$
Substituting these values in the RHS of equation (1), we get
\[1 + S = {(1 - \dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(\dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(2)^{\dfrac{3}{2}}} = 2\sqrt 2 \]
Now, subtract 1 from both the sides to get S.
Therefore, $S = 2\sqrt 2 - 1$
That is, the sum of the given series is $S = 2\sqrt 2 - 1$.
Note: For any real number x such that$\left| x \right| < 1$ and rational number n, the binomial expansion of ${(1 + x)^n}$ is given by
${(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1)}}{{2!}}{x^2} + .... + \dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}{x^r} + .....$
Where $\dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}$is the coefficient of the\[{r^{th}}\]term of the series
Complete step by step solution:
We have an infinite series $\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
We need to find the sum of this series.
Let’s call the sum as S.
Then we have $S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....(1)$
We will simplify the above expression by adding 1 on both the sides of the equation.
Thus, we have
$1 + S = 1 + \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....$
Now, RHS can be expressed as follows:
$1 + S = 1 + \dfrac{3}{{1!}}.(\dfrac{1}{4}) + \dfrac{{3.5}}{{2!}}.{(\dfrac{1}{4})^2} + \dfrac{{3.5.7}}{{3!}}.{(\dfrac{1}{4})^3} + ....(1)$
Consider the expansion of${(1 - x)^{ - \dfrac{p}{q}}}$
\[{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....\]
Comparing (1) with the expansion, we get $p = 3$ and $p + q = 5$.
$ \Rightarrow q = 2$.
Also $\dfrac{x}{q} = \dfrac{1}{4} \Rightarrow x = \dfrac{1}{2}$
Substituting these values in the RHS of equation (1), we get
\[1 + S = {(1 - \dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(\dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(2)^{\dfrac{3}{2}}} = 2\sqrt 2 \]
Now, subtract 1 from both the sides to get S.
Therefore, $S = 2\sqrt 2 - 1$
That is, the sum of the given series is $S = 2\sqrt 2 - 1$.
Note: For any real number x such that$\left| x \right| < 1$ and rational number n, the binomial expansion of ${(1 + x)^n}$ is given by
${(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1)}}{{2!}}{x^2} + .... + \dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}{x^r} + .....$
Where $\dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}$is the coefficient of the\[{r^{th}}\]term of the series
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE