Answer
Verified
421.8k+ views
Hint: Problems of this type have non-specific answers, this means that we will be able to find the range between which the answer lies. Using a trigonometric formula of isosceles triangle, we will get the limits between which the length of the third side of an isosceles triangle can exist. So, we can take any value between the limits and conclude it as the answer to the problem.
Complete step by step answer:
For an isosceles triangle if the given two sides have the same length then for calculating the length of the third side of the triangle, we can use a trigonometric formula for finding the length of the unknown side of the triangle, which is
$l=2\cdot a\cdot sin\left( \dfrac{\theta }{2} \right)$
Here, $l$ is the length of the third side of the triangle, $a$ is the length of the other two sides of the triangle and $\theta $ is the angle between the similar sides of the triangle.
The angle $\theta $ lies between $0$ to $\pi $
We know that $\sin \left( \dfrac{0}{2} \right)=0$ and $\sin \left( \dfrac{\pi }{2} \right)=1$
From the formula we get
$l=2\cdot 15\cdot sin\left( \dfrac{0}{2} \right)$
$\Rightarrow l=0$ , when $\theta =0$
Also, $l=2\cdot 15\cdot sin\left( \dfrac{\pi }{2} \right)$
$\Rightarrow l=30$ , when $\theta =\pi $
As the angle $\theta $ can take any value between the range $\left( 0,\pi \right)$ the length of the third side of an isosceles triangle can take any value between the range $\left( 0,30 \right)$ .
Therefore, we can conclude that the third side of an isosceles triangle can be of any length between $0$ and $30$ .
Note:
The problem can also be solved by applying the property of triangles. According to a property of triangles the sum of any two sides is greater than the third and the difference between any two sides is less than the third. So, in this case the lower limit for the length of the third side is $0$ and the upper limit for the length of the third side is $30$ . As, $15-15=0$ and $15+15=30$ .
Complete step by step answer:
For an isosceles triangle if the given two sides have the same length then for calculating the length of the third side of the triangle, we can use a trigonometric formula for finding the length of the unknown side of the triangle, which is
$l=2\cdot a\cdot sin\left( \dfrac{\theta }{2} \right)$
Here, $l$ is the length of the third side of the triangle, $a$ is the length of the other two sides of the triangle and $\theta $ is the angle between the similar sides of the triangle.
The angle $\theta $ lies between $0$ to $\pi $
We know that $\sin \left( \dfrac{0}{2} \right)=0$ and $\sin \left( \dfrac{\pi }{2} \right)=1$
From the formula we get
$l=2\cdot 15\cdot sin\left( \dfrac{0}{2} \right)$
$\Rightarrow l=0$ , when $\theta =0$
Also, $l=2\cdot 15\cdot sin\left( \dfrac{\pi }{2} \right)$
$\Rightarrow l=30$ , when $\theta =\pi $
As the angle $\theta $ can take any value between the range $\left( 0,\pi \right)$ the length of the third side of an isosceles triangle can take any value between the range $\left( 0,30 \right)$ .
Therefore, we can conclude that the third side of an isosceles triangle can be of any length between $0$ and $30$ .
Note:
The problem can also be solved by applying the property of triangles. According to a property of triangles the sum of any two sides is greater than the third and the difference between any two sides is less than the third. So, in this case the lower limit for the length of the third side is $0$ and the upper limit for the length of the third side is $30$ . As, $15-15=0$ and $15+15=30$ .
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE