Answer
Verified
433.5k+ views
Hint: Problems of this type have non-specific answers, this means that we will be able to find the range between which the answer lies. Using a trigonometric formula of isosceles triangle, we will get the limits between which the length of the third side of an isosceles triangle can exist. So, we can take any value between the limits and conclude it as the answer to the problem.
Complete step by step answer:
For an isosceles triangle if the given two sides have the same length then for calculating the length of the third side of the triangle, we can use a trigonometric formula for finding the length of the unknown side of the triangle, which is
$l=2\cdot a\cdot sin\left( \dfrac{\theta }{2} \right)$
Here, $l$ is the length of the third side of the triangle, $a$ is the length of the other two sides of the triangle and $\theta $ is the angle between the similar sides of the triangle.
The angle $\theta $ lies between $0$ to $\pi $
We know that $\sin \left( \dfrac{0}{2} \right)=0$ and $\sin \left( \dfrac{\pi }{2} \right)=1$
From the formula we get
$l=2\cdot 15\cdot sin\left( \dfrac{0}{2} \right)$
$\Rightarrow l=0$ , when $\theta =0$
Also, $l=2\cdot 15\cdot sin\left( \dfrac{\pi }{2} \right)$
$\Rightarrow l=30$ , when $\theta =\pi $
As the angle $\theta $ can take any value between the range $\left( 0,\pi \right)$ the length of the third side of an isosceles triangle can take any value between the range $\left( 0,30 \right)$ .
Therefore, we can conclude that the third side of an isosceles triangle can be of any length between $0$ and $30$ .
Note:
The problem can also be solved by applying the property of triangles. According to a property of triangles the sum of any two sides is greater than the third and the difference between any two sides is less than the third. So, in this case the lower limit for the length of the third side is $0$ and the upper limit for the length of the third side is $30$ . As, $15-15=0$ and $15+15=30$ .
Complete step by step answer:
For an isosceles triangle if the given two sides have the same length then for calculating the length of the third side of the triangle, we can use a trigonometric formula for finding the length of the unknown side of the triangle, which is
$l=2\cdot a\cdot sin\left( \dfrac{\theta }{2} \right)$
Here, $l$ is the length of the third side of the triangle, $a$ is the length of the other two sides of the triangle and $\theta $ is the angle between the similar sides of the triangle.
The angle $\theta $ lies between $0$ to $\pi $
We know that $\sin \left( \dfrac{0}{2} \right)=0$ and $\sin \left( \dfrac{\pi }{2} \right)=1$
From the formula we get
$l=2\cdot 15\cdot sin\left( \dfrac{0}{2} \right)$
$\Rightarrow l=0$ , when $\theta =0$
Also, $l=2\cdot 15\cdot sin\left( \dfrac{\pi }{2} \right)$
$\Rightarrow l=30$ , when $\theta =\pi $
As the angle $\theta $ can take any value between the range $\left( 0,\pi \right)$ the length of the third side of an isosceles triangle can take any value between the range $\left( 0,30 \right)$ .
Therefore, we can conclude that the third side of an isosceles triangle can be of any length between $0$ and $30$ .
Note:
The problem can also be solved by applying the property of triangles. According to a property of triangles the sum of any two sides is greater than the third and the difference between any two sides is less than the third. So, in this case the lower limit for the length of the third side is $0$ and the upper limit for the length of the third side is $30$ . As, $15-15=0$ and $15+15=30$ .
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE