
Find the value of a : b : c : d, if a : b = 2 : 3, b : c = 4 : 5 and c : d = 6 : 7.
Answer
508.8k+ views
Hint: To solve this question, we need to make the common variables uniform across different ratios by finding the lowest common multiple (LCM) of values of those common variables in different ratios, like b in a : b and b : c and c in b : c and c : d. Once we get the value of b and c such that they are uniform across various ratios, we can combine the ratios with common values, like a : b and b : c can be combined as a : b : c, given b has the same value in a : b and b : c. Thus, in similar fashion, we can find the value of a : b : c : d.
Complete step by step answer:
Let us first consider the value of b.
It is given that a : b = 2 : 3 and b : c = 4 : 5. Thus, LCM of 3 and 4 is 12. Therefore, we need to multiply the first ratio by 4 and the second ratio by 3.
a : b = 4(2) : 4(3) = 8 : 12
b : c = 3(4) : 3(5) = 12 : 15
Now, as the value of b is common across the two ratios, we can combine them.
Therefore, a : b : c = 8 : 12 : 15.
Now, we shall make the value of c common.
The ratios with us are a : b : c = 8 : 12 : 15 and c : d = 6 : 7.
LCM of 15 and 6 is 30. Therefore, we need to multiply the first ratio by 2 and the second ratio by 5.
a : b : c = 2(8) : 2(12) : 2(15) = 16 : 24 : 30
c : d = 5(6) : 5(7) = 30 : 35
Now, as the value of c is common across the two ratios, we can combine them.
Therefore a : b : c : d = 16 : 24 : 30 : 35
Note: It is to be noted that the multiplying the antecedent and consequent of the ratio with the same number does not change the value of the ratio.
Complete step by step answer:
Let us first consider the value of b.
It is given that a : b = 2 : 3 and b : c = 4 : 5. Thus, LCM of 3 and 4 is 12. Therefore, we need to multiply the first ratio by 4 and the second ratio by 3.
Now, as the value of b is common across the two ratios, we can combine them.
Therefore, a : b : c = 8 : 12 : 15.
Now, we shall make the value of c common.
The ratios with us are a : b : c = 8 : 12 : 15 and c : d = 6 : 7.
LCM of 15 and 6 is 30. Therefore, we need to multiply the first ratio by 2 and the second ratio by 5.
Now, as the value of c is common across the two ratios, we can combine them.
Therefore a : b : c : d = 16 : 24 : 30 : 35
Note: It is to be noted that the multiplying the antecedent and consequent of the ratio with the same number does not change the value of the ratio.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Questions & Answers - Ask your doubts

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Differentiate between the Western and the Eastern class 9 social science CBSE
