Find the value of $\cos \theta $,If angle $\theta =-30{}^\circ $
Answer
Verified
509.7k+ views
Hint: Here we are given angle $\theta =-30{}^\circ $ and we have to find the value of $\cos \theta $ . So for that substitute the value of $\theta =-30{}^\circ $ in $\cos \theta $. Try it, you will get the answer.
Complete step-by-step answer:
The trigonometric functions (also called circular functions, angle functions, or trigonometric functions) are real functions that relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena, through Fourier analysis.
The most widely used trigonometric functions are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used in modern mathematics.
The cosine function, along with sine and tangent, is one of the three most common trigonometric functions. In any right triangle, the cosine of an angle is the length of the adjacent side (A) divided by the length of the hypotenuse (H). In a formula, it is written simply as '$\cos $'. $\cos $ function (or cosine function) in a triangle is the ratio of the adjacent side to that of the hypotenuse. The cosine function is one of the three main primary trigonometric functions and it is itself the complement of sine (cos + sine).
The cosine graph or the cos graph is an up-down graph just like the sine graph. The only difference between the sine graph and the cos graph is that the sine graph starts from $0$ while the cos graph starts from $90{}^\circ $ (or $\dfrac{\pi }{2}$).
We are given angle $\theta =-30{}^\circ $ .
So now we have to find $\cos \theta $ .
Let us substitute the value $\theta =-30{}^\circ $ in $\cos \theta $, we get,
\[\cos \theta =\cos (-30{}^\circ )\]
We know that, $\cos (-a)=\cos a$.
\[\cos \theta =\cos (-30{}^\circ )=\cos 30{}^\circ =\dfrac{\sqrt{3}}{2}\]
Here, we get the value of $\cos \theta $ at $\theta =-30{}^\circ $ is $\dfrac{\sqrt{3}}{2}$ .
Note: Read the question carefully. Do not make silly mistakes. Don’t get confused while solving the problem. Your concept regarding trigonometric functions should be clear. Do not jumble yourself while simplifying.
Complete step-by-step answer:
The trigonometric functions (also called circular functions, angle functions, or trigonometric functions) are real functions that relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena, through Fourier analysis.
The most widely used trigonometric functions are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used in modern mathematics.
The cosine function, along with sine and tangent, is one of the three most common trigonometric functions. In any right triangle, the cosine of an angle is the length of the adjacent side (A) divided by the length of the hypotenuse (H). In a formula, it is written simply as '$\cos $'. $\cos $ function (or cosine function) in a triangle is the ratio of the adjacent side to that of the hypotenuse. The cosine function is one of the three main primary trigonometric functions and it is itself the complement of sine (cos + sine).
The cosine graph or the cos graph is an up-down graph just like the sine graph. The only difference between the sine graph and the cos graph is that the sine graph starts from $0$ while the cos graph starts from $90{}^\circ $ (or $\dfrac{\pi }{2}$).
We are given angle $\theta =-30{}^\circ $ .
So now we have to find $\cos \theta $ .
Let us substitute the value $\theta =-30{}^\circ $ in $\cos \theta $, we get,
\[\cos \theta =\cos (-30{}^\circ )\]
We know that, $\cos (-a)=\cos a$.
\[\cos \theta =\cos (-30{}^\circ )=\cos 30{}^\circ =\dfrac{\sqrt{3}}{2}\]
Here, we get the value of $\cos \theta $ at $\theta =-30{}^\circ $ is $\dfrac{\sqrt{3}}{2}$ .
Note: Read the question carefully. Do not make silly mistakes. Don’t get confused while solving the problem. Your concept regarding trigonometric functions should be clear. Do not jumble yourself while simplifying.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE
Can anyone list 10 advantages and disadvantages of friction
Distinguish between Mitosis and Meiosis class 11 biology CBSE