
Find the value of \[\int {\dfrac{1}{{3 + 2\sin x + \cos x}}dx} \] .
Answer
573.6k+ views
Hint: Here we will write all the terms in the form of \[\tan x\] by using the below-mentioned formulas:
\[\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] , \[\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] and \[\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}}\] .
Complete step-by-step solution:
Step 1: We will replace the terms \[\sin x\] and \[\cos x\] by substituting the values of them in the form of \[\tan x\] as shown below:
\[I = \int {\dfrac{1}{{3 + 2\left( {\dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right)}}dx} \]
By opening the brackets and multiplying \[2\]inside the term \[\left( {\dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right)\] , we get:
\[ \Rightarrow I = \int {\dfrac{1}{{\dfrac{{4\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + 3}}dx} \] ……………………….. (1)
Step 2: By taking \[1 + {\tan ^2}\dfrac{x}{2}\] common from the denominator and adding the numerator terms in the above expression (1), we get:
\[ \Rightarrow I = \int {\dfrac{1}{{\dfrac{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\dfrac{x}{2}}}}}dx} \]
By bringing \[1 + {\tan ^2}\dfrac{x}{2}\] into the numerator position, we get:
\[ \Rightarrow I = \int {\dfrac{{1 + {{\tan }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}dx} \] ………….. (2)
As we know that \[1 + {\tan ^2}\dfrac{x}{2} = {\sec ^2}\dfrac{x}{2}\] , so by replacing it in the above expression (2), we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}dx} \]
By opening the brackets in the denominator of the above expression we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3 + 3{{\tan }^2}\dfrac{x}{2} + 1 - {{\tan }^2}\dfrac{x}{2}}}dx} \]
By doing simple addition and subtraction in the denominator part of the above expression we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}dx} \] …………………… (3)
Step 3: Now, we will assume that \[\tan \dfrac{x}{2} = t\] and differentiating it w.r.t \[t\] , we get:
\[ \Rightarrow {\sec ^2}\left( {\dfrac{x}{2}} \right) \times \dfrac{1}{2}dx = dt\]
We can write the above expression as below by bringing \[2\] into the RHS side:
\[ \Rightarrow {\sec ^2}\left( {\dfrac{x}{2}} \right)dx = 2dt\]
By substituting these values in the expression (3), we get:
\[ \Rightarrow I = \int {\dfrac{{2dt}}{{4t + 2{\operatorname{t} ^2} + 4}}} \] \[\left( {\because \tan \dfrac{x}{2} = t,{{\sec }^2}\dfrac{x}{2}dx = 2dt} \right)\]
By dividing the RHS side with \[2\], we get:
\[ \Rightarrow I = \int {\dfrac{{dt}}{{2t + {\operatorname{t} ^2} + 2}}} \]
By writing the term \[2t + {\operatorname{t} ^2} + 2 = {\left( {t + 1} \right)^2} + {\left( 1 \right)^2}\]in the RHS side of the expression \[I = \int {\dfrac{{dt}}{{2t + {\operatorname{t} ^2} + 2}}} \] , we get:
\[ \Rightarrow I = \int {\dfrac{{dt}}{{{{\left( {t + 1} \right)}^2} + {{\left( 1 \right)}^2}}}} \] …………………. (4)
Step 4: As we know that \[\dfrac{1}{{{x^2} + {a^2}}}dx = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + {\text{c}}\] , where \[{\text{c}}\] is an arbitrary constant. Comparing the above expression (4) with this formula, we get:
\[ \Rightarrow I = \dfrac{1}{1}{\tan ^{ - 1}}\dfrac{{\left( {t + 1} \right)}}{1} + {\text{c}}\]
By substituting the value of \[t = \tan \dfrac{x}{2}\] , in the above expression we get:
\[ \Rightarrow I = {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2} + 1} \right) + {\text{c}}\]
$ \therefore$ The value of \[\int {\dfrac{1}{{3 + 2\sin x + \cos x}}dx} = {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2} + 1} \right) + {\text{c}}\]
Note: In solving these types of question students should remember some basic formulas as given below:
\[\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] , \[\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] and \[\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}}\] , these are known as tangent half-angle formulas.
\[\dfrac{1}{{{x^2} + {a^2}}}dx = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + {\text{c}}\] , proof of which is showing below:
Suppose we need to evaluate the integral \[\dfrac{1}{{{x^2} + {a^2}}}dx\] for \[a \ne 0\]. So, by multiplying and dividing the expression with \[{a^2}\] , we get:
\[ \Rightarrow \int {\dfrac{1}{{{x^2} + {a^2}}}dx = \int {\dfrac{1}{{1 + \dfrac{{{x^2}}}{{{a^2}}}}}\dfrac{{dx}}{{{a^2}}}} } \]
Now by writing the terms \[\dfrac{x}{a} = u\] and differentiating it, we get:
\[ \Rightarrow \dfrac{{dx}}{a} = du\]
By substituting this value in the above expression \[\int {\dfrac{1}{{{x^2} + {a^2}}}dx = \int {\dfrac{1}{{1 + \dfrac{{{x^2}}}{{{a^2}}}}}\dfrac{{dx}}{{{a^2}}}} } \] , we get:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}\int {\dfrac{{du}}{{1 + {u^2}}}} } \]
We can write the above expression as below:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}u + {\text{c}}} \] , where \[{\text{c}}\] is an arbitrary constant.
By substituting the value of \[\dfrac{x}{a} = u\] in the above expression, we get:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\dfrac{x}{a} + {\text{c}}} \]
\[\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] , \[\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] and \[\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}}\] .
Complete step-by-step solution:
Step 1: We will replace the terms \[\sin x\] and \[\cos x\] by substituting the values of them in the form of \[\tan x\] as shown below:
\[I = \int {\dfrac{1}{{3 + 2\left( {\dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right)}}dx} \]
By opening the brackets and multiplying \[2\]inside the term \[\left( {\dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right)\] , we get:
\[ \Rightarrow I = \int {\dfrac{1}{{\dfrac{{4\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} + 3}}dx} \] ……………………….. (1)
Step 2: By taking \[1 + {\tan ^2}\dfrac{x}{2}\] common from the denominator and adding the numerator terms in the above expression (1), we get:
\[ \Rightarrow I = \int {\dfrac{1}{{\dfrac{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\dfrac{x}{2}}}}}dx} \]
By bringing \[1 + {\tan ^2}\dfrac{x}{2}\] into the numerator position, we get:
\[ \Rightarrow I = \int {\dfrac{{1 + {{\tan }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}dx} \] ………….. (2)
As we know that \[1 + {\tan ^2}\dfrac{x}{2} = {\sec ^2}\dfrac{x}{2}\] , so by replacing it in the above expression (2), we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) + \left( {1 - {{\tan }^2}\dfrac{x}{2}} \right)}}dx} \]
By opening the brackets in the denominator of the above expression we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 3 + 3{{\tan }^2}\dfrac{x}{2} + 1 - {{\tan }^2}\dfrac{x}{2}}}dx} \]
By doing simple addition and subtraction in the denominator part of the above expression we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\dfrac{x}{2}}}{{4\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}dx} \] …………………… (3)
Step 3: Now, we will assume that \[\tan \dfrac{x}{2} = t\] and differentiating it w.r.t \[t\] , we get:
\[ \Rightarrow {\sec ^2}\left( {\dfrac{x}{2}} \right) \times \dfrac{1}{2}dx = dt\]
We can write the above expression as below by bringing \[2\] into the RHS side:
\[ \Rightarrow {\sec ^2}\left( {\dfrac{x}{2}} \right)dx = 2dt\]
By substituting these values in the expression (3), we get:
\[ \Rightarrow I = \int {\dfrac{{2dt}}{{4t + 2{\operatorname{t} ^2} + 4}}} \] \[\left( {\because \tan \dfrac{x}{2} = t,{{\sec }^2}\dfrac{x}{2}dx = 2dt} \right)\]
By dividing the RHS side with \[2\], we get:
\[ \Rightarrow I = \int {\dfrac{{dt}}{{2t + {\operatorname{t} ^2} + 2}}} \]
By writing the term \[2t + {\operatorname{t} ^2} + 2 = {\left( {t + 1} \right)^2} + {\left( 1 \right)^2}\]in the RHS side of the expression \[I = \int {\dfrac{{dt}}{{2t + {\operatorname{t} ^2} + 2}}} \] , we get:
\[ \Rightarrow I = \int {\dfrac{{dt}}{{{{\left( {t + 1} \right)}^2} + {{\left( 1 \right)}^2}}}} \] …………………. (4)
Step 4: As we know that \[\dfrac{1}{{{x^2} + {a^2}}}dx = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + {\text{c}}\] , where \[{\text{c}}\] is an arbitrary constant. Comparing the above expression (4) with this formula, we get:
\[ \Rightarrow I = \dfrac{1}{1}{\tan ^{ - 1}}\dfrac{{\left( {t + 1} \right)}}{1} + {\text{c}}\]
By substituting the value of \[t = \tan \dfrac{x}{2}\] , in the above expression we get:
\[ \Rightarrow I = {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2} + 1} \right) + {\text{c}}\]
$ \therefore$ The value of \[\int {\dfrac{1}{{3 + 2\sin x + \cos x}}dx} = {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2} + 1} \right) + {\text{c}}\]
Note: In solving these types of question students should remember some basic formulas as given below:
\[\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] , \[\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\] and \[\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 - {{\tan }^2}\dfrac{x}{2}}}\] , these are known as tangent half-angle formulas.
\[\dfrac{1}{{{x^2} + {a^2}}}dx = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + {\text{c}}\] , proof of which is showing below:
Suppose we need to evaluate the integral \[\dfrac{1}{{{x^2} + {a^2}}}dx\] for \[a \ne 0\]. So, by multiplying and dividing the expression with \[{a^2}\] , we get:
\[ \Rightarrow \int {\dfrac{1}{{{x^2} + {a^2}}}dx = \int {\dfrac{1}{{1 + \dfrac{{{x^2}}}{{{a^2}}}}}\dfrac{{dx}}{{{a^2}}}} } \]
Now by writing the terms \[\dfrac{x}{a} = u\] and differentiating it, we get:
\[ \Rightarrow \dfrac{{dx}}{a} = du\]
By substituting this value in the above expression \[\int {\dfrac{1}{{{x^2} + {a^2}}}dx = \int {\dfrac{1}{{1 + \dfrac{{{x^2}}}{{{a^2}}}}}\dfrac{{dx}}{{{a^2}}}} } \] , we get:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}\int {\dfrac{{du}}{{1 + {u^2}}}} } \]
We can write the above expression as below:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}u + {\text{c}}} \] , where \[{\text{c}}\] is an arbitrary constant.
By substituting the value of \[\dfrac{x}{a} = u\] in the above expression, we get:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\dfrac{x}{a} + {\text{c}}} \]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

