Answer
Verified
498.9k+ views
Hint-We will make use of the formula of integration by parts and solve it.
We have the integral I= $\int\limits_1^4 {\mathop {\log }\nolimits_e } [x]dx$
Since we have the limit of integral from 1 to 4,we will split the limits and write the integral
So, we get
I=\[\] \[\;\;\int\limits_1^2 {\mathop {\log }\nolimits_e } [x]dx\] +\[\;\;\int\limits_2^3 {\mathop {\log }\nolimits_e } [x]dx\] +\[\;\;\int\limits_3^4 {\mathop {\log }\nolimits_e } [x]dx\]
Greatest integer function is discontinuous at all integers. So we should write the definition of
the function in each of the smaller limits.So,we can write the integral I as
I=\[\;\;\int\limits_1^2 {\mathop {\log }\nolimits_e } 1dx + \;\;\int\limits_2^3 {\mathop {\log }\nolimits_e } 2dx + \;\;\int\limits_3^4 {\mathop {\log }\nolimits_e } 3dx\]
Let us solve this integral by putting the value of ${\log _e}1 = 0$ ,since \[{\log _e}2\] and \[{\log _e}3\] are constants take it out of the integral and solve
I=$\int\limits_1^2 0 dx$ +${\log _e}2\int\limits_2^3 {dx} $ +${\log _e}3\int\limits_3^4 {dx} $
We know that integral 1 dx is equal to x
So, on solving the integral further ,we get
I= 0+${\log _e}2[x]_1^2 + {\log _e}3[x]_3^4$
On applying limits, we get
I=${\log _e}2$$[2 - 1]$ +${\log _e}3[4 - 3]$
So , we get I= ${\log _e}2 + {\log _e}3$
But we know the formula which says
${\log _e}a + {\log _e}b = {\log _e}ab$
Therefore, we can write
${\log _e}2 + {\log _e}3$=${\log _e}6$
So, therefore the value of the integral I=${\log _e}6$=ln6
So, option C is the correct answer
Note: It is possible to integrate to the greatest integer functions only when the limits are
given, if the limits are not given, we cannot solve the problem.
We have the integral I= $\int\limits_1^4 {\mathop {\log }\nolimits_e } [x]dx$
Since we have the limit of integral from 1 to 4,we will split the limits and write the integral
So, we get
I=\[\] \[\;\;\int\limits_1^2 {\mathop {\log }\nolimits_e } [x]dx\] +\[\;\;\int\limits_2^3 {\mathop {\log }\nolimits_e } [x]dx\] +\[\;\;\int\limits_3^4 {\mathop {\log }\nolimits_e } [x]dx\]
Greatest integer function is discontinuous at all integers. So we should write the definition of
the function in each of the smaller limits.So,we can write the integral I as
I=\[\;\;\int\limits_1^2 {\mathop {\log }\nolimits_e } 1dx + \;\;\int\limits_2^3 {\mathop {\log }\nolimits_e } 2dx + \;\;\int\limits_3^4 {\mathop {\log }\nolimits_e } 3dx\]
Let us solve this integral by putting the value of ${\log _e}1 = 0$ ,since \[{\log _e}2\] and \[{\log _e}3\] are constants take it out of the integral and solve
I=$\int\limits_1^2 0 dx$ +${\log _e}2\int\limits_2^3 {dx} $ +${\log _e}3\int\limits_3^4 {dx} $
We know that integral 1 dx is equal to x
So, on solving the integral further ,we get
I= 0+${\log _e}2[x]_1^2 + {\log _e}3[x]_3^4$
On applying limits, we get
I=${\log _e}2$$[2 - 1]$ +${\log _e}3[4 - 3]$
So , we get I= ${\log _e}2 + {\log _e}3$
But we know the formula which says
${\log _e}a + {\log _e}b = {\log _e}ab$
Therefore, we can write
${\log _e}2 + {\log _e}3$=${\log _e}6$
So, therefore the value of the integral I=${\log _e}6$=ln6
So, option C is the correct answer
Note: It is possible to integrate to the greatest integer functions only when the limits are
given, if the limits are not given, we cannot solve the problem.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE