Answer
Verified
430.8k+ views
Hint:
Here, we are required to find the vertex of the given parabola. Thus, we will simplify the given equation and solve it to find its vertex form. Then, comparing it with the general equation of parabola, we will be able to find the required vertex of the parabola.
Formula Used:
\[{a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\]
Complete step by step solution:
The given equation is \[{y^2} + 2y - 2x + 5 = 0\]
Now, we will shift all the terms to the RHS except the term containing the variable \[x\]
Hence, we get,
\[2x = {y^2} + 2y + 5\]
Dividing 2 on both sides, we get
\[ \Rightarrow x = \dfrac{{{y^2} + 2y + 5}}{2}\]
Rewriting the equation, we get
\[ \Rightarrow x = \dfrac{{{y^2} + 2y + 1}}{2} + \dfrac{4}{2}\]
Hence, using the identity \[{a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\] in the numerator of first fraction in the RHS, we get,
\[ \Rightarrow x = \dfrac{{{{\left( {y + 1} \right)}^2}}}{2} + 2\]
Or \[x = \dfrac{1}{2}{\left( {y - \left( { - 1} \right)} \right)^2} + 2\]
Comparing this with \[x = m{\left( {y - b} \right)^2} + a\], where \[\left( {x,y} \right) = \left( {a,b} \right)\] is the vertex.
Thus, comparing the given equation with the general equation, we get,
Vertex \[\left( {x,y} \right) = \left( {2, - 1} \right)\]
Therefore, the vertex of the given parabola \[{y^2} + 2y - 2x + 5 = 0\] is \[\left( {2, - 1} \right)\]
Hence, this is the required answer.
Note:
A parabola is a curve having a focus and a directrix, such that each point on parabola is at equal distance from them. The axis of symmetry of a parabola is a line about which the parabola is symmetrical. When the parabola is vertical, the line of symmetry is vertical. When a quadratic function is graphed in the coordinate plane, the resulting parabola and corresponding axis of symmetry are vertical. Also, in this question, the parabola opens "sideways" and the axis of symmetry of the parabola is horizontal. The standard form of equation of a horizontal parabola is \[x = a{y^2} + by + c\] where \[a,b\] and \[c\] are all real numbers \[a \ne 0\].
Here, we are required to find the vertex of the given parabola. Thus, we will simplify the given equation and solve it to find its vertex form. Then, comparing it with the general equation of parabola, we will be able to find the required vertex of the parabola.
Formula Used:
\[{a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\]
Complete step by step solution:
The given equation is \[{y^2} + 2y - 2x + 5 = 0\]
Now, we will shift all the terms to the RHS except the term containing the variable \[x\]
Hence, we get,
\[2x = {y^2} + 2y + 5\]
Dividing 2 on both sides, we get
\[ \Rightarrow x = \dfrac{{{y^2} + 2y + 5}}{2}\]
Rewriting the equation, we get
\[ \Rightarrow x = \dfrac{{{y^2} + 2y + 1}}{2} + \dfrac{4}{2}\]
Hence, using the identity \[{a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\] in the numerator of first fraction in the RHS, we get,
\[ \Rightarrow x = \dfrac{{{{\left( {y + 1} \right)}^2}}}{2} + 2\]
Or \[x = \dfrac{1}{2}{\left( {y - \left( { - 1} \right)} \right)^2} + 2\]
Comparing this with \[x = m{\left( {y - b} \right)^2} + a\], where \[\left( {x,y} \right) = \left( {a,b} \right)\] is the vertex.
Thus, comparing the given equation with the general equation, we get,
Vertex \[\left( {x,y} \right) = \left( {2, - 1} \right)\]
Therefore, the vertex of the given parabola \[{y^2} + 2y - 2x + 5 = 0\] is \[\left( {2, - 1} \right)\]
Hence, this is the required answer.
Note:
A parabola is a curve having a focus and a directrix, such that each point on parabola is at equal distance from them. The axis of symmetry of a parabola is a line about which the parabola is symmetrical. When the parabola is vertical, the line of symmetry is vertical. When a quadratic function is graphed in the coordinate plane, the resulting parabola and corresponding axis of symmetry are vertical. Also, in this question, the parabola opens "sideways" and the axis of symmetry of the parabola is horizontal. The standard form of equation of a horizontal parabola is \[x = a{y^2} + by + c\] where \[a,b\] and \[c\] are all real numbers \[a \ne 0\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE