Find the volume of the rectangular tank whose length, breadth, and depth (in units) are
(a) \[\dfrac{4}{9}xy,\dfrac{2}{15}x{{y}^{3}},\dfrac{75}{16}{{x}^{3}}z\]
(b) \[\left( x-y \right),\left( x+y \right),\left( {{x}^{2}}-{{y}^{2}} \right)\]
Answer
Verified
462k+ views
Hint: In part (a), the length, breadth, and height of a rectangular tank are given. The formula for the volume, Volume = Length \[\times \] Breadth \[\times \] Height. Now, use the length, breadth, and height to calculate the volume of the tank. Similarly, calculate the volume of the tank in part (b) as well.
Complete step-by-step answer:
According to the question, we are given the length, breadth, and height of a rectangular tank.
We know that a rectangular tank is of cuboidal shape.
Here, in this question, we are asked to find the volume of the rectangular tank.
We know that the volume of the cuboid is the product of its length, breadth, and height, that is, Volume of a cuboid = Length \[\times \] Breadth \[\times \] Height ……………………………………..(1)
Since the rectangular tank is of cuboidal shape so, the formula for the volume of cuboid will be applicable for the volume of the rectangular tank too ……………………………………….(2)
From equation (1) and equation (2), we have
The volume of the rectangular tank = Length \[\times \] Breadth \[\times \] Height …………………………………….(3)
(a) We are given that,
The length of the tank = \[\dfrac{4}{9}xy\] units ………………………………………………(4)
The breadth of the tank = \[\dfrac{2}{15}x{{y}^{3}}\] units ………………………………………(5)
The depth of the tank = The height of the tank = \[\dfrac{75}{16}{{x}^{3}}z\] units …………………………………………..(6)
Now, from equation (3), equation (4), equation (5), and equation (6), we get
The volume of the rectangular tank = \[\dfrac{4}{9}xy\times \dfrac{2}{15}x{{y}^{3}}\times \dfrac{75}{16}{{x}^{3}}z=\dfrac{5}{18}{{x}^{5}}{{y}^{4}}z\] .
Therefore, the volume of the rectangular tank is \[\dfrac{5}{18}{{x}^{5}}{{y}^{4}}z\] .
(b) Similarly, we are given that,
The length of the tank = \[\left( x-y \right)\] units ………………………………………………(7)
The breadth of the tank = \[\left( x+y \right)\] units ………………………………………(8)
The depth of the tank = The height of the tank = \[\left( {{x}^{2}}-{{y}^{2}} \right)\] units …………………………………………..(9)
Now, from equation (3), equation (7), equation (8), and equation (9), we get
The volume of the rectangular tank = \[\left( x-y \right)\times \left( x+y \right)\times \left( {{x}^{2}}-{{y}^{2}} \right)\] \[=\left( {{x}^{2}}-{{y}^{2}} \right)\left( {{x}^{2}}-{{y}^{2}} \right)={{x}^{4}}+{{y}^{4}}-2{{x}^{2}}{{y}^{2}}\] .
Therefore, the volume of the rectangular tank is \[\left( {{x}^{4}}+{{y}^{4}}-2{{x}^{2}}{{y}^{2}} \right)\] .
Note: Here, one might question how a rectangular tank is of cuboidal shape. Since a base of rectangular shape has some length as well as the breadth and if the rectangular base is given some height then, we can observe that a cuboid is formed.
Complete step-by-step answer:
According to the question, we are given the length, breadth, and height of a rectangular tank.
We know that a rectangular tank is of cuboidal shape.
Here, in this question, we are asked to find the volume of the rectangular tank.
We know that the volume of the cuboid is the product of its length, breadth, and height, that is, Volume of a cuboid = Length \[\times \] Breadth \[\times \] Height ……………………………………..(1)
Since the rectangular tank is of cuboidal shape so, the formula for the volume of cuboid will be applicable for the volume of the rectangular tank too ……………………………………….(2)
From equation (1) and equation (2), we have
The volume of the rectangular tank = Length \[\times \] Breadth \[\times \] Height …………………………………….(3)
(a) We are given that,
The length of the tank = \[\dfrac{4}{9}xy\] units ………………………………………………(4)
The breadth of the tank = \[\dfrac{2}{15}x{{y}^{3}}\] units ………………………………………(5)
The depth of the tank = The height of the tank = \[\dfrac{75}{16}{{x}^{3}}z\] units …………………………………………..(6)
Now, from equation (3), equation (4), equation (5), and equation (6), we get
The volume of the rectangular tank = \[\dfrac{4}{9}xy\times \dfrac{2}{15}x{{y}^{3}}\times \dfrac{75}{16}{{x}^{3}}z=\dfrac{5}{18}{{x}^{5}}{{y}^{4}}z\] .
Therefore, the volume of the rectangular tank is \[\dfrac{5}{18}{{x}^{5}}{{y}^{4}}z\] .
(b) Similarly, we are given that,
The length of the tank = \[\left( x-y \right)\] units ………………………………………………(7)
The breadth of the tank = \[\left( x+y \right)\] units ………………………………………(8)
The depth of the tank = The height of the tank = \[\left( {{x}^{2}}-{{y}^{2}} \right)\] units …………………………………………..(9)
Now, from equation (3), equation (7), equation (8), and equation (9), we get
The volume of the rectangular tank = \[\left( x-y \right)\times \left( x+y \right)\times \left( {{x}^{2}}-{{y}^{2}} \right)\] \[=\left( {{x}^{2}}-{{y}^{2}} \right)\left( {{x}^{2}}-{{y}^{2}} \right)={{x}^{4}}+{{y}^{4}}-2{{x}^{2}}{{y}^{2}}\] .
Therefore, the volume of the rectangular tank is \[\left( {{x}^{4}}+{{y}^{4}}-2{{x}^{2}}{{y}^{2}} \right)\] .
Note: Here, one might question how a rectangular tank is of cuboidal shape. Since a base of rectangular shape has some length as well as the breadth and if the rectangular base is given some height then, we can observe that a cuboid is formed.
Recently Updated Pages
Questions & Answers - Ask your doubts
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Science: Engaging Questions & Answers for Success
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
In case of conflict between fundamental rights of citizens class 7 social science CBSE
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.
Which places in India experience sunrise first and class 9 social science CBSE