Answer
Verified
397.2k+ views
Hint: The general gas equation, also known as the ideal gas law, is the state equation of a potentially ideal gas. While it has many drawbacks, it is a reasonable approximation of the action of certain gases under several conditions.
Complete answer:
The molar mass of a chemical compound is known as the mass of a sample divided by the amount of material in the sample, measured in moles, in chemistry. The molar mass of a material is a bulk property, not a molecular property.
Let's call the unknown gas X.
Let \[{M_N}\] and \[{M_X}\] represent the nitrogen and other gas molar masses, respectively.
Using the ideal gas equation-
PV = nRT
Given data,
P = 2.8 bar
V = 4 L
T = 273 K
R = \[{\mathbf{0}}.{\mathbf{0821LatmJ}}{{\mathbf{K}}^{ - 1}}{\mathbf{mo}}{{\mathbf{l}}^{ - 1}}\]
The total number of moles in the solution (n) = \[ = \dfrac{{2.8 \times 4}}{{0.0821 \times 273}} = 0.5{\text{ moles }}\]
The number of moles of nitrogen gas is given as 0.4 moles
The number of moles of gas X = 0.5 – 0.4 = 0.1
Now, according to Graham's diffusion rule,
\[{\text{ rate of effusion }} = \dfrac{{{\text{ no}}{\text{. of moles }}}}{{{\text{ time taken }}}}\]
Given that t=10 minutes
Rate of effusion of nitrogen \[\left( {{{\mathbf{r}}_{\text{N}}}} \right) = \dfrac{{0.4}}{{10}} = 0.04\]
Rate of effusion of gas X \[\left( {{{\text{r}}_{\text{X}}}} \right) = \dfrac{{0.1}}{{10}} = 0.01\]
Furthermore, we are aware that
\[\dfrac{{{{\text{r}}_{\text{N}}}}}{{{{\text{r}}_{\text{X}}}}} = \sqrt {\dfrac{{{{\text{M}}_{\text{X}}}}}{{{{\text{M}}_{\text{N}}}}}} \]
We know that the molar mass of nitrogen gas is 28g.
\[\therefore \dfrac{{{\mathbf{0}}.{\mathbf{04}}}}{{{\mathbf{0}}.{\mathbf{01}}}} = \sqrt {\dfrac{{{{\mathbf{M}}_{\mathbf{X}}}}}{{{\mathbf{28}}}}} \]
\[ \Rightarrow \sqrt {{{\text{M}}_{\text{X}}}} = 4 \times \sqrt {28} \]
Squaring on both sides, we have
\[{{\mathbf{M}}_{\mathbf{X}}} = {\mathbf{16}} \times {\mathbf{28}} = {\mathbf{448gm}}/{\mathbf{mol}}\]
Therefore the molar mass of unknown gas is 448gm/mol.
Note:
Nitrogen is an inert gas, which means it doesn't react chemically with other gases and isn't harmful. However, breathing pure nitrogen is lethal. This is due to the gas's ability to displace oxygen in the lungs. According to the US Chemical Safety and Hazard Investigation Board, unconsciousness can occur in as few as one or two breaths.
Complete answer:
The molar mass of a chemical compound is known as the mass of a sample divided by the amount of material in the sample, measured in moles, in chemistry. The molar mass of a material is a bulk property, not a molecular property.
Let's call the unknown gas X.
Let \[{M_N}\] and \[{M_X}\] represent the nitrogen and other gas molar masses, respectively.
Using the ideal gas equation-
PV = nRT
Given data,
P = 2.8 bar
V = 4 L
T = 273 K
R = \[{\mathbf{0}}.{\mathbf{0821LatmJ}}{{\mathbf{K}}^{ - 1}}{\mathbf{mo}}{{\mathbf{l}}^{ - 1}}\]
The total number of moles in the solution (n) = \[ = \dfrac{{2.8 \times 4}}{{0.0821 \times 273}} = 0.5{\text{ moles }}\]
The number of moles of nitrogen gas is given as 0.4 moles
The number of moles of gas X = 0.5 – 0.4 = 0.1
Now, according to Graham's diffusion rule,
\[{\text{ rate of effusion }} = \dfrac{{{\text{ no}}{\text{. of moles }}}}{{{\text{ time taken }}}}\]
Given that t=10 minutes
Rate of effusion of nitrogen \[\left( {{{\mathbf{r}}_{\text{N}}}} \right) = \dfrac{{0.4}}{{10}} = 0.04\]
Rate of effusion of gas X \[\left( {{{\text{r}}_{\text{X}}}} \right) = \dfrac{{0.1}}{{10}} = 0.01\]
Furthermore, we are aware that
\[\dfrac{{{{\text{r}}_{\text{N}}}}}{{{{\text{r}}_{\text{X}}}}} = \sqrt {\dfrac{{{{\text{M}}_{\text{X}}}}}{{{{\text{M}}_{\text{N}}}}}} \]
We know that the molar mass of nitrogen gas is 28g.
\[\therefore \dfrac{{{\mathbf{0}}.{\mathbf{04}}}}{{{\mathbf{0}}.{\mathbf{01}}}} = \sqrt {\dfrac{{{{\mathbf{M}}_{\mathbf{X}}}}}{{{\mathbf{28}}}}} \]
\[ \Rightarrow \sqrt {{{\text{M}}_{\text{X}}}} = 4 \times \sqrt {28} \]
Squaring on both sides, we have
\[{{\mathbf{M}}_{\mathbf{X}}} = {\mathbf{16}} \times {\mathbf{28}} = {\mathbf{448gm}}/{\mathbf{mol}}\]
Therefore the molar mass of unknown gas is 448gm/mol.
Note:
Nitrogen is an inert gas, which means it doesn't react chemically with other gases and isn't harmful. However, breathing pure nitrogen is lethal. This is due to the gas's ability to displace oxygen in the lungs. According to the US Chemical Safety and Hazard Investigation Board, unconsciousness can occur in as few as one or two breaths.
Recently Updated Pages
On the portion of the straight line x + 2y 4 intercepted class 11 maths JEE_Main
The equations of two equal sides AB AC of an isosceles class 11 maths JEE_Main
If two curves whose equations are ax2 + 2hxy + by2 class 11 maths JEE_Main
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE