
For every pair of continuous function \[f,g:\left[ {0,{\text{ }}1} \right] \to R\] such that \[max\{ f\left( x \right):x \in \left[ {0,1} \right]\} = max\{ g\left( x \right):x \in \left[ {0,1} \right]\} \], the correct statement(s) is (are):
A. \[{\left[ {f\left( c \right)} \right]^2} + {\text{3}}f\left( c \right) = {\left[ {g\left( c \right)} \right]^2} + 3g\left( c \right)\]for some\[c \in \left[ {0,{\text{ }}1} \right]\].
B. \[{\left[ {f\left( c \right)} \right]^2} + f\left( c \right) = {\left[ {g\left( c \right)} \right]^2} + 3g\left( c \right)\]for some\[c \in \left[ {0,{\text{ }}1} \right]\].
C. \[{\left[ {f\left( c \right)} \right]^2} + {\text{3}}f\left( c \right) = {\left[ {g\left( c \right)} \right]^2} + g\left( c \right)\] for some\[c \in \left[ {0,{\text{ }}1} \right]\].
D.\[{\left[ {f\left( c \right)} \right]^2}{\text{ }} = {\text{ }}{\left[ {g\left( c \right)} \right]^2}\]for some\[c \in \left[ {0,{\text{ }}1} \right]\].
Answer
493.5k+ views
Hint:For any function \[f\left( x \right)\] if at some point p function is positive and any other point q function is negative that is \[f\left( p \right) > 0\] and \[f\left( q \right) < 0\] then there is at least one root of \[f\left( x \right)\] between p and q.
Complete step-by-step answer:
We are given that for every pair of continuous function \[f,g:\left[ {0,{\text{ }}1} \right] \to R\] such that\[max\{ f\left( x \right):x \in \left[ {0,1} \right]\} = max\{ g\left( x \right):x \in \left[ {0,1} \right]\} \].
Let us take one function at a time. First we take \[f\left( x \right)\].
Let the value of which the function \[f\left( x \right)\] is maximum by ${c_1}$. This is shown as –
\[max\{ f\left( x \right):x \in \left[ {0,1} \right]\} \]=\[f\left( {{c_1}} \right)\]
Similarly, we take the second function \[g\left( x \right)\] and we get,
Let the value of which the function \[g\left( x \right)\] is maximum by ${c_2}$. This is shown as –
\[max\{ g\left( x \right):x \in \left[ {0,1} \right]\} = g({c_2})\]
Now let us take one other function \[h\left( x \right)\] as shown –
\[h\left( x \right)\]=\[f\left( x \right)\]-\[g\left( x \right)\]
Let us find Function \[h\left( x \right)\] for $x = {c_1}$. We get,
\[h\left( {{c_1}} \right)\]=\[f\left( {{c_1}} \right)\]-\[g\left( {{c_1}} \right)\]
Since, \[f\left( {{c_1}} \right)\] is greater than \[g\left( {{c_1}} \right)\] because at $x = {c_1}$ we get maximum value of \[f\left( x \right)\] whereas in case of \[g\left( x \right)\] at $x = {c_1}$ we do not get the maximum value. Therefore,
\[h\left( {{c_1}} \right) > 0\]
Let us find Function \[h\left( x \right)\] for $x = {c_2}$. We get,
\[h\left( {{c_2}} \right)\]=\[f\left( {{c_2}} \right)\]-\[g\left( {{c_2}} \right)\]
Since, \[g\left( {{c_2}} \right)\] is greater than \[f\left( {{c_2}} \right)\] because at $x = {c_2}$ we get maximum value of \[g\left( x \right)\] whereas in case of \[f\left( x \right)\] at \[x = {c_2}\] we do not get the maximum value. Therefore,
\[h\left( {{c_2}} \right) < 0\]
Therefore, for any arbitrary \[c\] which lie in between ${c_1}$ and ${c_2}$ \[h\left( x \right)\] has a root that is –
\[h\left( c \right) = 0\] For \[c \in \left[ {0,{\text{ }}1} \right]\].
Which implies,
\[f(c) - g\left( c \right) = 0\] For \[c \in \left[ {0,{\text{ }}1} \right]\]
\[ \Rightarrow f(c) = g\left( c \right)\]…………. (1)
Now, squaring both sides we get –
\[ \Rightarrow {[f(c)]^2} = {[g\left( c \right)]^2}\]…….. (2)
Multiplying equation (1) by 3 we get,
\[ \Rightarrow 3f(c) = 3g\left( c \right)\]………… (3)
Adding both the equations (2) and (3) we get,
\[{\left[ {f\left( c \right)} \right]^2} + {\text{3}}f\left( c \right) = {\left[ {g\left( c \right)} \right]^2} + 3g\left( c \right)\]…….. (4)
Therefore, from equations (2) and (4) we get that options (A) and (D) are correct options.
So, the correct answer is “Option A and D”.
Note:When we use the property that for any function \[f\left( x \right)\] if at some point p function is positive and any other point q function is negative that is \[f\left( p \right) > 0\] and \[f\left( q \right) < 0\] then there is at least one root of \[f\left( x \right)\] between p and q. It should be noted that the number of roots lying between p and q are atleast one and not equal to one.
Complete step-by-step answer:
We are given that for every pair of continuous function \[f,g:\left[ {0,{\text{ }}1} \right] \to R\] such that\[max\{ f\left( x \right):x \in \left[ {0,1} \right]\} = max\{ g\left( x \right):x \in \left[ {0,1} \right]\} \].
Let us take one function at a time. First we take \[f\left( x \right)\].
Let the value of which the function \[f\left( x \right)\] is maximum by ${c_1}$. This is shown as –
\[max\{ f\left( x \right):x \in \left[ {0,1} \right]\} \]=\[f\left( {{c_1}} \right)\]
Similarly, we take the second function \[g\left( x \right)\] and we get,
Let the value of which the function \[g\left( x \right)\] is maximum by ${c_2}$. This is shown as –
\[max\{ g\left( x \right):x \in \left[ {0,1} \right]\} = g({c_2})\]
Now let us take one other function \[h\left( x \right)\] as shown –
\[h\left( x \right)\]=\[f\left( x \right)\]-\[g\left( x \right)\]
Let us find Function \[h\left( x \right)\] for $x = {c_1}$. We get,
\[h\left( {{c_1}} \right)\]=\[f\left( {{c_1}} \right)\]-\[g\left( {{c_1}} \right)\]
Since, \[f\left( {{c_1}} \right)\] is greater than \[g\left( {{c_1}} \right)\] because at $x = {c_1}$ we get maximum value of \[f\left( x \right)\] whereas in case of \[g\left( x \right)\] at $x = {c_1}$ we do not get the maximum value. Therefore,
\[h\left( {{c_1}} \right) > 0\]
Let us find Function \[h\left( x \right)\] for $x = {c_2}$. We get,
\[h\left( {{c_2}} \right)\]=\[f\left( {{c_2}} \right)\]-\[g\left( {{c_2}} \right)\]
Since, \[g\left( {{c_2}} \right)\] is greater than \[f\left( {{c_2}} \right)\] because at $x = {c_2}$ we get maximum value of \[g\left( x \right)\] whereas in case of \[f\left( x \right)\] at \[x = {c_2}\] we do not get the maximum value. Therefore,
\[h\left( {{c_2}} \right) < 0\]
Therefore, for any arbitrary \[c\] which lie in between ${c_1}$ and ${c_2}$ \[h\left( x \right)\] has a root that is –
\[h\left( c \right) = 0\] For \[c \in \left[ {0,{\text{ }}1} \right]\].
Which implies,
\[f(c) - g\left( c \right) = 0\] For \[c \in \left[ {0,{\text{ }}1} \right]\]
\[ \Rightarrow f(c) = g\left( c \right)\]…………. (1)
Now, squaring both sides we get –
\[ \Rightarrow {[f(c)]^2} = {[g\left( c \right)]^2}\]…….. (2)
Multiplying equation (1) by 3 we get,
\[ \Rightarrow 3f(c) = 3g\left( c \right)\]………… (3)
Adding both the equations (2) and (3) we get,
\[{\left[ {f\left( c \right)} \right]^2} + {\text{3}}f\left( c \right) = {\left[ {g\left( c \right)} \right]^2} + 3g\left( c \right)\]…….. (4)
Therefore, from equations (2) and (4) we get that options (A) and (D) are correct options.
So, the correct answer is “Option A and D”.
Note:When we use the property that for any function \[f\left( x \right)\] if at some point p function is positive and any other point q function is negative that is \[f\left( p \right) > 0\] and \[f\left( q \right) < 0\] then there is at least one root of \[f\left( x \right)\] between p and q. It should be noted that the number of roots lying between p and q are atleast one and not equal to one.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE

Which of the following properties of a proton can change class 12 physics CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Why is the cell called the structural and functional class 12 biology CBSE
