
For the principal value, evaluate the following
\[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-2{{\sec }^{-1}}\left( 2\tan \dfrac{\pi }{6} \right)\]
Answer
607.5k+ views
Hint:First of all, substitute the value of \[\tan \dfrac{\pi }{6}\] from the trigonometric table. Now find the angles at which \[\sin \theta =\dfrac{\sqrt{3}}{2}\] and \[sec\theta =\dfrac{2}{\sqrt{3}}\] or the value of \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] and \[se{{c}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)\] and substitute these in the given expression to get the required answer.
Complete step-by-step answer:
In this question, we have to find the principal value of the expression \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-2{{\sec }^{-1}}\left( 2\tan \dfrac{\pi }{6} \right)\].
First of all, let us consider the expression given in the question,
\[E={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-2{{\sec }^{-1}}\left( 2\tan \dfrac{\pi }{6} \right)....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
From the above table, we get, \[\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}\]. So, by substituting the value of \[\tan \dfrac{\pi }{6}\] in equation (i), we get,
\[E={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-2{{\sec }^{-1}}\left( 2.\dfrac{1}{\sqrt{3}} \right)\]
\[E={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-2{{\sec }^{-1}}\left( \dfrac{2}{\sqrt{3}} \right).....\left( ii \right)\]
Now we know that the range of principal value of \[{{\sin }^{-1}}\left( x \right)\] lies between \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
From the table of general trigonometric ratios, we get,
\[\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\]
By taking \[{{\sin }^{-1}}\] on both the sides, we get,
\[{{\sin }^{-1}}\sin \left( \dfrac{\pi }{3} \right)={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\]
We know that for \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2},{{\sin }^{-1}}\sin \left( x \right)=x\]. So, we get,
\[\dfrac{\pi }{3}={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)...\left( iii \right)\]
Now, we also know that the range of principal value of \[se{{c}^{-1}}x\] lies between \[\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}\]
From the table of trigonometric ratios, we get,
\[sec\left( \dfrac{\pi }{6} \right)=\dfrac{2}{\sqrt{3}}\]
By taking \[se{{c}^{-1}}\] on both the sides, we get,
\[se{{c}^{-1}}\left( sec\left( \dfrac{\pi }{6} \right) \right)=se{{c}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)\]
We know that for \[\left[ 0\le x\le \pi \right]-\left\{ \dfrac{\pi }{2} \right\},se{{c}^{-1}}sec\left( x \right)=x\]. So, we get,
\[\dfrac{\pi }{6}=se{{c}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)....\left( iv \right)\]
So, by substituting the value of \[se{{c}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)\] from equation (iv) and \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] from equation (iii) in equation (ii), we get,
\[E=\dfrac{\pi }{3}-2\left( \dfrac{\pi }{6} \right)\]
\[E=\dfrac{\pi }{3}-\dfrac{\pi }{3}\]
\[E=0\]
Hence, we get the value of \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-2{{\sec }^{-1}}\left( 2\tan \dfrac{\pi }{6} \right)\] as 0.
Note: In these types of questions, first of all, students must remember the trigonometric ratios at general angles like \[{{0}^{o}},{{30}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}},\] etc. Also, students must note that \[{{\sin }^{-1}}\sin \left( x \right)=x\] and \[se{{c}^{-1}}\sec \left( x \right)=x\] are the only value for their respective ranges and not for other values of x. Students should not confuse between \[{{\sin }^{-1}}\sin x\] and \[\sin {{\sin }^{-1}}x\] and simplify for other trigonometric ratios as well.
Complete step-by-step answer:
In this question, we have to find the principal value of the expression \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-2{{\sec }^{-1}}\left( 2\tan \dfrac{\pi }{6} \right)\].
First of all, let us consider the expression given in the question,
\[E={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-2{{\sec }^{-1}}\left( 2\tan \dfrac{\pi }{6} \right)....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
From the above table, we get, \[\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}\]. So, by substituting the value of \[\tan \dfrac{\pi }{6}\] in equation (i), we get,
\[E={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-2{{\sec }^{-1}}\left( 2.\dfrac{1}{\sqrt{3}} \right)\]
\[E={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-2{{\sec }^{-1}}\left( \dfrac{2}{\sqrt{3}} \right).....\left( ii \right)\]
Now we know that the range of principal value of \[{{\sin }^{-1}}\left( x \right)\] lies between \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
From the table of general trigonometric ratios, we get,
\[\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}\]
By taking \[{{\sin }^{-1}}\] on both the sides, we get,
\[{{\sin }^{-1}}\sin \left( \dfrac{\pi }{3} \right)={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\]
We know that for \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2},{{\sin }^{-1}}\sin \left( x \right)=x\]. So, we get,
\[\dfrac{\pi }{3}={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)...\left( iii \right)\]
Now, we also know that the range of principal value of \[se{{c}^{-1}}x\] lies between \[\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}\]
From the table of trigonometric ratios, we get,
\[sec\left( \dfrac{\pi }{6} \right)=\dfrac{2}{\sqrt{3}}\]
By taking \[se{{c}^{-1}}\] on both the sides, we get,
\[se{{c}^{-1}}\left( sec\left( \dfrac{\pi }{6} \right) \right)=se{{c}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)\]
We know that for \[\left[ 0\le x\le \pi \right]-\left\{ \dfrac{\pi }{2} \right\},se{{c}^{-1}}sec\left( x \right)=x\]. So, we get,
\[\dfrac{\pi }{6}=se{{c}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)....\left( iv \right)\]
So, by substituting the value of \[se{{c}^{-1}}\left( \dfrac{2}{\sqrt{3}} \right)\] from equation (iv) and \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] from equation (iii) in equation (ii), we get,
\[E=\dfrac{\pi }{3}-2\left( \dfrac{\pi }{6} \right)\]
\[E=\dfrac{\pi }{3}-\dfrac{\pi }{3}\]
\[E=0\]
Hence, we get the value of \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)-2{{\sec }^{-1}}\left( 2\tan \dfrac{\pi }{6} \right)\] as 0.
Note: In these types of questions, first of all, students must remember the trigonometric ratios at general angles like \[{{0}^{o}},{{30}^{o}},{{45}^{o}},{{60}^{o}},{{90}^{o}},\] etc. Also, students must note that \[{{\sin }^{-1}}\sin \left( x \right)=x\] and \[se{{c}^{-1}}\sec \left( x \right)=x\] are the only value for their respective ranges and not for other values of x. Students should not confuse between \[{{\sin }^{-1}}\sin x\] and \[\sin {{\sin }^{-1}}x\] and simplify for other trigonometric ratios as well.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

