
For what integral value of n is \[3\pi \] the period of the function $\cos \left( nx \right)\sin \left( \dfrac{5x}{n} \right)$?
Answer
588.6k+ views
Hint: First of all we have to know about the period of the function. The period of any function $f\left( x \right)$ is T such that $f\left( x+T \right)=f\left( x \right)$. So, we will use this condition to find the required value.
Complete step-by-step answer:
We have been asked to find the integral value of n such that \[3\pi \] is the period of the function $\cos \left( nx \right)\sin \left( \dfrac{5x}{n} \right)$ .
Let, $f\left( x \right)=\cos \left( nx \right)\sin \left( \dfrac{5x}{n} \right)$
We know that if T is a period of a function $f\left( x \right)$ then $f\left( x+T \right)=f\left( x \right)$.
We have \[3\pi \] is the period of the function $f\left( x \right)$.
\[\begin{align}
& \Rightarrow f\left( x+3\pi \right)=f\left( x \right) \\
& \Rightarrow \cos \left( n\left( x+3\pi \right) \right)\sin \left( \dfrac{5\left( x+3\pi \right)}{n} \right)=\cos \left( nx \right)\sin \left( \dfrac{5x}{n} \right) \\
& \Rightarrow \cos \left( nx+3n\pi \right)\sin \left( \dfrac{15\pi +5x}{n} \right)=\cos nx\sin \left( \dfrac{5x}{n} \right) \\
\end{align}\]
Since, $\cos \left( x+2n\pi \right)=\cos x\ and\ \cos \left( x+\left( 2n+1 \right)\pi \right)=-\cos x$
$\begin{align}
& \Rightarrow {{\left( -1 \right)}^{n}}\cos \left( nx \right)\sin \left( \dfrac{15\pi }{n}+\dfrac{5x}{n} \right)=\cos nx\sin \left( \dfrac{5x}{n} \right) \\
& \Rightarrow {{\left( -1 \right)}^{n}}\cos nx\sin \left( \dfrac{5x}{n}+\dfrac{15\pi }{n} \right)-\cos nx\sin \dfrac{5x}{n}=0 \\
\end{align}$
Taking $'\cos nx'$ as common, we get,
$\cos nx\left( {{\left( -1 \right)}^{n}}\sin \left( \dfrac{5x}{n}+\dfrac{15\pi }{n} \right)-\sin \dfrac{5x}{n} \right)=0$
Now, $\cos nx\ne 0$ because if it is equal to zero then $f\left( x \right)=0$.
$\begin{align}
& \Rightarrow \left( {{\left( -1 \right)}^{n}}\sin \left( \dfrac{5x}{n}+\dfrac{15\pi }{n} \right)-\sin \dfrac{5x}{n} \right)=0 \\
& \Rightarrow {{\left( -1 \right)}^{n}}\sin \left( \dfrac{5x}{n}+\dfrac{15\pi }{n} \right)=\sin \left( \dfrac{5x}{n} \right) \\
\end{align}$
By using the trigonometric identity,
$\begin{align}
& \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \\
& {{\left( -1 \right)}^{n}}\left[ \sin \left( \dfrac{5x}{n} \right)\cos \dfrac{15\pi }{n}+\cos \left( \dfrac{5x}{n} \right)\sin \left( \dfrac{15\pi }{n} \right) \right]=\sin \left( \dfrac{5x}{n} \right) \\
\end{align}$
We know that the periodic function $f\left( x \right)$ is satisfied for all values of ‘x’.
Let us assume $x=0$ for our equation.
$\begin{align}
& \Rightarrow {{\left( -1 \right)}^{n}}\left[ \sin 0\cos \dfrac{15\pi }{n}+\cos 0\sin \left( \dfrac{15\pi }{n} \right) \right]=\sin 0 \\
& \Rightarrow {{\left( -1 \right)}^{n}}\left[ 0+\sin \left( \dfrac{15\pi }{n} \right) \right]=0 \\
& \Rightarrow \sin \left[ \dfrac{15\pi }{n} \right]=0 \\
\end{align}$
Since, we know that $\sin \left( n\pi \right)=0$ where $n=0,1,2,3,......$
$\Rightarrow n=\pm 1,\pm 3,\pm 5,\pm 15$
Therefore, the integral values are $\pm 1,\pm 3,\pm 5\ and\ \pm 15$.
Note: Be careful while doing the simplification of the function and also take care of the sign.
Also, remember that the period of the function is the distance between repetition of any function and these types of function is known as periodic function and it satisfied the condition, $f\left( x+T \right)=f\left( x \right)$ where T is the fundamental period of the function $f\left( x \right)$.
Complete step-by-step answer:
We have been asked to find the integral value of n such that \[3\pi \] is the period of the function $\cos \left( nx \right)\sin \left( \dfrac{5x}{n} \right)$ .
Let, $f\left( x \right)=\cos \left( nx \right)\sin \left( \dfrac{5x}{n} \right)$
We know that if T is a period of a function $f\left( x \right)$ then $f\left( x+T \right)=f\left( x \right)$.
We have \[3\pi \] is the period of the function $f\left( x \right)$.
\[\begin{align}
& \Rightarrow f\left( x+3\pi \right)=f\left( x \right) \\
& \Rightarrow \cos \left( n\left( x+3\pi \right) \right)\sin \left( \dfrac{5\left( x+3\pi \right)}{n} \right)=\cos \left( nx \right)\sin \left( \dfrac{5x}{n} \right) \\
& \Rightarrow \cos \left( nx+3n\pi \right)\sin \left( \dfrac{15\pi +5x}{n} \right)=\cos nx\sin \left( \dfrac{5x}{n} \right) \\
\end{align}\]
Since, $\cos \left( x+2n\pi \right)=\cos x\ and\ \cos \left( x+\left( 2n+1 \right)\pi \right)=-\cos x$
$\begin{align}
& \Rightarrow {{\left( -1 \right)}^{n}}\cos \left( nx \right)\sin \left( \dfrac{15\pi }{n}+\dfrac{5x}{n} \right)=\cos nx\sin \left( \dfrac{5x}{n} \right) \\
& \Rightarrow {{\left( -1 \right)}^{n}}\cos nx\sin \left( \dfrac{5x}{n}+\dfrac{15\pi }{n} \right)-\cos nx\sin \dfrac{5x}{n}=0 \\
\end{align}$
Taking $'\cos nx'$ as common, we get,
$\cos nx\left( {{\left( -1 \right)}^{n}}\sin \left( \dfrac{5x}{n}+\dfrac{15\pi }{n} \right)-\sin \dfrac{5x}{n} \right)=0$
Now, $\cos nx\ne 0$ because if it is equal to zero then $f\left( x \right)=0$.
$\begin{align}
& \Rightarrow \left( {{\left( -1 \right)}^{n}}\sin \left( \dfrac{5x}{n}+\dfrac{15\pi }{n} \right)-\sin \dfrac{5x}{n} \right)=0 \\
& \Rightarrow {{\left( -1 \right)}^{n}}\sin \left( \dfrac{5x}{n}+\dfrac{15\pi }{n} \right)=\sin \left( \dfrac{5x}{n} \right) \\
\end{align}$
By using the trigonometric identity,
$\begin{align}
& \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \\
& {{\left( -1 \right)}^{n}}\left[ \sin \left( \dfrac{5x}{n} \right)\cos \dfrac{15\pi }{n}+\cos \left( \dfrac{5x}{n} \right)\sin \left( \dfrac{15\pi }{n} \right) \right]=\sin \left( \dfrac{5x}{n} \right) \\
\end{align}$
We know that the periodic function $f\left( x \right)$ is satisfied for all values of ‘x’.
Let us assume $x=0$ for our equation.
$\begin{align}
& \Rightarrow {{\left( -1 \right)}^{n}}\left[ \sin 0\cos \dfrac{15\pi }{n}+\cos 0\sin \left( \dfrac{15\pi }{n} \right) \right]=\sin 0 \\
& \Rightarrow {{\left( -1 \right)}^{n}}\left[ 0+\sin \left( \dfrac{15\pi }{n} \right) \right]=0 \\
& \Rightarrow \sin \left[ \dfrac{15\pi }{n} \right]=0 \\
\end{align}$
Since, we know that $\sin \left( n\pi \right)=0$ where $n=0,1,2,3,......$
$\Rightarrow n=\pm 1,\pm 3,\pm 5,\pm 15$
Therefore, the integral values are $\pm 1,\pm 3,\pm 5\ and\ \pm 15$.
Note: Be careful while doing the simplification of the function and also take care of the sign.
Also, remember that the period of the function is the distance between repetition of any function and these types of function is known as periodic function and it satisfied the condition, $f\left( x+T \right)=f\left( x \right)$ where T is the fundamental period of the function $f\left( x \right)$.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

