Answer
Verified
407.3k+ views
- Hint: The term gap in a general sense means there is a space which is empty between two regions. Here we are talking about the energy gap. We must have a clear idea about how temperature enables electrons from a lower energy level to get to higher energy levels.
Complete step-by-step solution -
First, we need to understand what is a forbidden energy gap. The forbidden energy band gap of a semiconductor is the energy difference (in eV) between the top of the conduction band and the bottom of the valence band in any materials whether it be a metal, an insulator or a semiconductor.
For easy understanding, we can say that the gap is a region where there are no states available for an electron to occupy.
In semiconductors, the conduction band and the valence band are separated by a small energy difference of about 1 eV. This is a small energy difference and can be overcome by thermal agitation.
The energy gap of a semiconductor material is dependent on the temperature. So as the temperature increases from room temperature there is a decrease in the forbidden energy gap. The relation between the forbidden energy gap and temperature is given by the equation,
$E_{g}(T)=E_{g}(0)-\dfrac{\alpha T^{2}}{T+\beta}$
Where,
$E_{g}(T)$ is the forbidden energy gap of the semiconductor at a temperature T.
$E_{g}(0)$ is the intrinsic forbidden energy gap of the semiconductor.
$\alpha$ and $\beta$ are constants.
Hence, Option (B) is correct.
Note: In the case of metals, the conduction band and valence band overlap each other. In insulators, the conduction band and the valence band are separated by a high energy difference (greater than 10 eV).
Complete step-by-step solution -
First, we need to understand what is a forbidden energy gap. The forbidden energy band gap of a semiconductor is the energy difference (in eV) between the top of the conduction band and the bottom of the valence band in any materials whether it be a metal, an insulator or a semiconductor.
For easy understanding, we can say that the gap is a region where there are no states available for an electron to occupy.
In semiconductors, the conduction band and the valence band are separated by a small energy difference of about 1 eV. This is a small energy difference and can be overcome by thermal agitation.
The energy gap of a semiconductor material is dependent on the temperature. So as the temperature increases from room temperature there is a decrease in the forbidden energy gap. The relation between the forbidden energy gap and temperature is given by the equation,
$E_{g}(T)=E_{g}(0)-\dfrac{\alpha T^{2}}{T+\beta}$
Where,
$E_{g}(T)$ is the forbidden energy gap of the semiconductor at a temperature T.
$E_{g}(0)$ is the intrinsic forbidden energy gap of the semiconductor.
$\alpha$ and $\beta$ are constants.
Hence, Option (B) is correct.
Note: In the case of metals, the conduction band and valence band overlap each other. In insulators, the conduction band and the valence band are separated by a high energy difference (greater than 10 eV).
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Why dont two magnetic lines of force intersect with class 12 physics CBSE
How many sp2 and sp hybridized carbon atoms are present class 12 chemistry CBSE