What is the fraction \[\dfrac{17}{7}\] as a repeating decimal?
Answer
Verified
408.9k+ views
Hint: In order to find out the repeating decimal of \[\dfrac{17}{7}\], firstly we have to check out if it is a repeating or non-repeating decimal. After finding out the category it belongs to, then we can find out the repeating decimal by simplifying it and then finding out the repeating decimal.
Complete step-by-step solution:
Now let us find whether \[\dfrac{17}{7}\] is a repeating decimal or not, in order to find out-
Firstly, find the denominator into its lowest term.
The GCF of \[17\] and \[7\] is one. Now convert \[\dfrac{17}{7}\] into simplest form by dividing it with one.
We get, \[\dfrac{17\div 1}{7\div 1}=\dfrac{17}{7}\]
The denominator in its lowest form is \[7\].
Now, find the prime factors of the lowest term i.e. \[7\]
Since\[7\]itself is a prime number, the prime factor is \[7\] itself.
Now, we will be determining if \[\dfrac{17}{7}\] is a repeating or non-repeating decimal.
A fraction is a repeating decimal if the prime factors of the denominator of the fraction in its lowest form and do not only contain \[2s\] and/or \[5s\] or do not have any prime factors at all.
Hence our fraction \[\dfrac{17}{7}\] is repeating.
Now let us find the repeating decimal.
On simplifying the fraction, we get
\[\dfrac{17}{7}=2.4285714385714285714285.....\]
This can be truncated for pre-fixing non-repeat strings to get the form \[\dfrac{17}{7}\].
Truncating helps in approximating the numbers. This is easier than rounding but does not give the best approximation always to the original number. This can be obtained by the method of approximating.
\[\dfrac{17}{7}=2.4285+10-4\left( .714285X(1+10-6+10-12+10-18+... \right)\]
\[\therefore \] The repeating decimal is \[\dfrac{17}{7}=2.4285714385714285714285.....\]
Note: A rational number can only be shown as decimal only if it is repeating or non-repeating. The repeating part of the decimal can be represented by placing dots or by placing the line over the pattern. The repeating part is called a period.
Complete step-by-step solution:
Now let us find whether \[\dfrac{17}{7}\] is a repeating decimal or not, in order to find out-
Firstly, find the denominator into its lowest term.
The GCF of \[17\] and \[7\] is one. Now convert \[\dfrac{17}{7}\] into simplest form by dividing it with one.
We get, \[\dfrac{17\div 1}{7\div 1}=\dfrac{17}{7}\]
The denominator in its lowest form is \[7\].
Now, find the prime factors of the lowest term i.e. \[7\]
Since\[7\]itself is a prime number, the prime factor is \[7\] itself.
Now, we will be determining if \[\dfrac{17}{7}\] is a repeating or non-repeating decimal.
A fraction is a repeating decimal if the prime factors of the denominator of the fraction in its lowest form and do not only contain \[2s\] and/or \[5s\] or do not have any prime factors at all.
Hence our fraction \[\dfrac{17}{7}\] is repeating.
Now let us find the repeating decimal.
On simplifying the fraction, we get
\[\dfrac{17}{7}=2.4285714385714285714285.....\]
This can be truncated for pre-fixing non-repeat strings to get the form \[\dfrac{17}{7}\].
Truncating helps in approximating the numbers. This is easier than rounding but does not give the best approximation always to the original number. This can be obtained by the method of approximating.
\[\dfrac{17}{7}=2.4285+10-4\left( .714285X(1+10-6+10-12+10-18+... \right)\]
\[\therefore \] The repeating decimal is \[\dfrac{17}{7}=2.4285714385714285714285.....\]
Note: A rational number can only be shown as decimal only if it is repeating or non-repeating. The repeating part of the decimal can be represented by placing dots or by placing the line over the pattern. The repeating part is called a period.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Write the following in Roman numerals 25819 class 7 maths CBSE
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
The Island of Bombay was given to the English Prince class 7 social science CBSE
Convert 200 Million dollars in rupees class 7 maths CBSE
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
What are the controls affecting the climate of Ind class 7 social science CBSE
The southernmost point of the Indian mainland is known class 7 social studies CBSE