Answer
Verified
428.4k+ views
Hint: We know that the ideal gas law states certain assumptions about gases and theory which are unnecessarily false. Therefore this results that ideal gas law has some sort of limitation within it. For example; ideal gas law creates an assumption that the gas particles have neither volume nor are attracted to one another.
Complete step-by-step answer:
Firstly we have to put mass of \[C{{O}_{2}}\] under the given conditions $1.01g$
After that we have to determine \[mol\text{ }C{{O}_{2}}\] by using Ideal gas laws and multiplying \[mol\text{ }C{{O}_{2}}\]by its molar mass $44.0098\dfrac{g}{mol}$ . Whereas the ideal gas law equation is given by: $PV=nRT$.
Here we have $P$ is pressure, $V$ is volume, $n$ is moles, $R$ is the gas constant and $T$ is temperature in Kelvins and the gas constant includes volume of unit in liters and the volume milliliters would be converted into liters.
Given :
\[\Rightarrow P\text{ }=\text{ }750.3\text{ }Torr\]
\[\Rightarrow V\text{ }=\text{ }520mL\text{ }\times \text{ }\dfrac{1L}{1000mL}~~=\text{ }0.520\text{ }L\]
\[\Rightarrow R\text{ }=~~62.364\text{ }L\text{ }\dfrac{Torr}{Kmol}~\]
\[\Rightarrow T~=~0{}^\circ C~+~273.15~=~273\text{ }K\]
Now that we know the formula or as we say ideal gas equation; $PV=nRT$
Thus from here we can determine the formula for $n$ we get formula for $n=\dfrac{R\cdot T}{P\cdot V}$ and now by substituting the values we get:
$\Rightarrow n=\dfrac{750.3Torr\times 0.520L}{62.364L\dfrac{Torr}{Kmol}\times 273K}=0.02298mol\cdot C{{O}_{2}}$
Where mass of \[C{{O}_{2}}\] can be given by, multiplying the value of $n$ with $\dfrac{44gC{{O}_{2}}}{1molC{{O}_{2}}}$ we get;
$\Rightarrow 0.02298mol\cdot C{{O}_{2}}\times \dfrac{44gC{{O}_{2}}}{1molC{{O}_{2}}}$
$\Rightarrow 1.01g\cdot C{{O}_{2}}$
Therefore, $1.01$ grams of \[C{{O}_{2}}\] are in \[520mL\] of carbon dioxide gas at $0$ degrees Celsius and a pressure of \[750.3\] torr.
Note: Note that since this particle of ideal gases have neither volume therefore gas should be able to get condensed to the volume of zero. Whereas real gaseous particle that occupy space. A gaseous state will be more and more condensed in order to form liquidity and has volume. The gaseous law have no longer application which is because of substance is no longer in a gaseous state.
Complete step-by-step answer:
Firstly we have to put mass of \[C{{O}_{2}}\] under the given conditions $1.01g$
After that we have to determine \[mol\text{ }C{{O}_{2}}\] by using Ideal gas laws and multiplying \[mol\text{ }C{{O}_{2}}\]by its molar mass $44.0098\dfrac{g}{mol}$ . Whereas the ideal gas law equation is given by: $PV=nRT$.
Here we have $P$ is pressure, $V$ is volume, $n$ is moles, $R$ is the gas constant and $T$ is temperature in Kelvins and the gas constant includes volume of unit in liters and the volume milliliters would be converted into liters.
Given :
\[\Rightarrow P\text{ }=\text{ }750.3\text{ }Torr\]
\[\Rightarrow V\text{ }=\text{ }520mL\text{ }\times \text{ }\dfrac{1L}{1000mL}~~=\text{ }0.520\text{ }L\]
\[\Rightarrow R\text{ }=~~62.364\text{ }L\text{ }\dfrac{Torr}{Kmol}~\]
\[\Rightarrow T~=~0{}^\circ C~+~273.15~=~273\text{ }K\]
Now that we know the formula or as we say ideal gas equation; $PV=nRT$
Thus from here we can determine the formula for $n$ we get formula for $n=\dfrac{R\cdot T}{P\cdot V}$ and now by substituting the values we get:
$\Rightarrow n=\dfrac{750.3Torr\times 0.520L}{62.364L\dfrac{Torr}{Kmol}\times 273K}=0.02298mol\cdot C{{O}_{2}}$
Where mass of \[C{{O}_{2}}\] can be given by, multiplying the value of $n$ with $\dfrac{44gC{{O}_{2}}}{1molC{{O}_{2}}}$ we get;
$\Rightarrow 0.02298mol\cdot C{{O}_{2}}\times \dfrac{44gC{{O}_{2}}}{1molC{{O}_{2}}}$
$\Rightarrow 1.01g\cdot C{{O}_{2}}$
Therefore, $1.01$ grams of \[C{{O}_{2}}\] are in \[520mL\] of carbon dioxide gas at $0$ degrees Celsius and a pressure of \[750.3\] torr.
Note: Note that since this particle of ideal gases have neither volume therefore gas should be able to get condensed to the volume of zero. Whereas real gaseous particle that occupy space. A gaseous state will be more and more condensed in order to form liquidity and has volume. The gaseous law have no longer application which is because of substance is no longer in a gaseous state.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers