Answer
Verified
430.2k+ views
Hint:This problem is related to conic sections. A curve which is obtained by intersection of the surface of a cone with a plane is known as a conic section. The parabola, the hyperbola and the ellipse are the three types of conic sections. The given problem deals with one of the types of conic section i.e., the parabola. The general standard equation of a parabola is ${x^2} = 4ay$.
Complete step by step solution:
Given parabola, $y = {x^2} - 4$.
First, we need to rewrite the given equation in vertex form i.e., $y = a{\left( {x - h} \right)^2} + k$ and then, determine the values of $a,h$ and $k$.
$y = {\left( {x + 0} \right)^2} - 4$
Here, $a = 1,h = 0$ and $k = - 4$.
Since the value of $a$ is positive, it means that the parabola opens up.
We know the vertex $\left( {h,k} \right)$ is $\left( {0, - 4} \right)$-----(1)
We now find the distance $p$, from the vertex to the focus. The distance from vertex to a focus of a parabola can be calculated using formula: $\dfrac{1}{{4a}}$. Substituting the value of$a$in the formula and we get,
$\dfrac{1}{{4 \times 1}} = \dfrac{1}{4}$
$p = \dfrac{1}{4}$------(2)
Next, we find the focus of the parabola. This can be done by adding $p$ to $y$ -coordinate $k$. That is,
$\left( {h,k + p} \right)$. Substituting the values of $h,k$ and $p$ in the formula and we get,
$\left( {0, - 4 + \dfrac{1}{4}} \right) = \left( {0, - \dfrac{{15}}{4}} \right)$
So, focus of parabola is $\left( {0, - \dfrac{{15}}{4}} \right)$-----(3)
We now find the axis of symmetry by finding the line that passes through the vertex and the focus.
$x = 0$-----(4)
The directrix of a parabola is the horizontal line which can be found by subtracting $p$ from $y$- coordinate $k$ of the vertex if parabola opens up or down i.e., $y = k - p$. By substituting the values
of $p$ and $k$ we get,
$y = - 4 - \dfrac{1}{4}$
$y = - \dfrac{{17}}{4}$-----(5)
From equation (1), (2), (3), (4) and (5) we can say,
Direction: Opens up
Vertex: $\left( {0, - 4} \right)$
Distance: $\dfrac{1}{4}$
Focus: $\left( {0, - \dfrac{{15}}{4}} \right)$
Axis of symmetry: $x = 0$
Directrix: $y = - \dfrac{{17}}{4}$
Let us find out some points by putting different values of $x$.
Thus, this is our required graph.
Note: Since the given equation of parabola includes linear $x$ and $y$ terms, then the vertex of the parabola can never be the origin. In such a case, the vertex has to be found by simplifying the equation into its standard form. If the parabola is ${x^2} = 4ay$, then the vertex of the parabola will be the origin.
Complete step by step solution:
Given parabola, $y = {x^2} - 4$.
First, we need to rewrite the given equation in vertex form i.e., $y = a{\left( {x - h} \right)^2} + k$ and then, determine the values of $a,h$ and $k$.
$y = {\left( {x + 0} \right)^2} - 4$
Here, $a = 1,h = 0$ and $k = - 4$.
Since the value of $a$ is positive, it means that the parabola opens up.
We know the vertex $\left( {h,k} \right)$ is $\left( {0, - 4} \right)$-----(1)
We now find the distance $p$, from the vertex to the focus. The distance from vertex to a focus of a parabola can be calculated using formula: $\dfrac{1}{{4a}}$. Substituting the value of$a$in the formula and we get,
$\dfrac{1}{{4 \times 1}} = \dfrac{1}{4}$
$p = \dfrac{1}{4}$------(2)
Next, we find the focus of the parabola. This can be done by adding $p$ to $y$ -coordinate $k$. That is,
$\left( {h,k + p} \right)$. Substituting the values of $h,k$ and $p$ in the formula and we get,
$\left( {0, - 4 + \dfrac{1}{4}} \right) = \left( {0, - \dfrac{{15}}{4}} \right)$
So, focus of parabola is $\left( {0, - \dfrac{{15}}{4}} \right)$-----(3)
We now find the axis of symmetry by finding the line that passes through the vertex and the focus.
$x = 0$-----(4)
The directrix of a parabola is the horizontal line which can be found by subtracting $p$ from $y$- coordinate $k$ of the vertex if parabola opens up or down i.e., $y = k - p$. By substituting the values
of $p$ and $k$ we get,
$y = - 4 - \dfrac{1}{4}$
$y = - \dfrac{{17}}{4}$-----(5)
From equation (1), (2), (3), (4) and (5) we can say,
Direction: Opens up
Vertex: $\left( {0, - 4} \right)$
Distance: $\dfrac{1}{4}$
Focus: $\left( {0, - \dfrac{{15}}{4}} \right)$
Axis of symmetry: $x = 0$
Directrix: $y = - \dfrac{{17}}{4}$
Let us find out some points by putting different values of $x$.
$x$ | $ - 2$ | $ - 1$ | $0$ | $1$ | $2$ |
$y$ | $0$ | $ - 3$ | -4 | $ - 3$ | $0$ |
Thus, this is our required graph.
Note: Since the given equation of parabola includes linear $x$ and $y$ terms, then the vertex of the parabola can never be the origin. In such a case, the vertex has to be found by simplifying the equation into its standard form. If the parabola is ${x^2} = 4ay$, then the vertex of the parabola will be the origin.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE