Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Gravitational force on the surface of the moon is only 16 as strong as gravitational force on the earth. What is the weight in Newton of a 10kg object on the moon?
a. 16.66N
b. 15N
c.17.53N
d.16N

Answer
VerifiedVerified
498k+ views
like imagedislike image
Hint: Formula for weight is, W=mge. Acceleration due to gravity in the surface of the earth, ge=9.8m/s2. To find the acceleration due to gravity in the surface of the moon, we multiply ge=9.8m/s2 with 16.

Complete step by step answer:
Given, gravitational force on the surface of the moon is only 16 as strong as gravitational force on the earth.
Mass of the object, m=10kg

Step I:
We know that, acceleration due to gravity in the surface of the earth, ge=9.8m/s2.
Formula for weight is, W=mge
Therefore, the weight of the object on earth is, W=mge.
Substitute the values of m and ge in the above equation.
Now, weight of the object on earth is,
W=mge=10×9.8=98N

Step II:
Again, according to the question,
Acceleration due to gravity at moon,
gm=16×9.8=1.63m/s2
Therefore, the weight of the object on the moon is, W=mgm.
Substitute the values of m and gm in the above equation.
Now, weight of the object on moon is,
 W=mgm=10×1.63=16.3N
Hence, an object having a mass of 10kg has the weights on the earth and the moon is 98N and 16.3N respectively.

Note:
Know the difference between mass and weight.
Mass: Mass is both a real body component, and a measurement of its acceleration resistance whenever a net force is applied. Kilogram is the fundamental SI unit of mass.
Weight: The weight of an object is the force of gravity acting on the body. Its SI units are
kg.m/s2 or Newton (N).

In step I, determine the weight of the object on the earth surface by multiplying the mass of the object to the acceleration due to gravity on earth.
In step II, determine the weight of the object on the moon surface by multiplying the mass of the object to the acceleration due to gravity on earth ×16.