Answer
Verified
468.9k+ views
Hint: Formula for weight is, $ W = m{g_e} $. Acceleration due to gravity in the surface of the earth, $ {g_e} = 9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}} $. To find the acceleration due to gravity in the surface of the moon, we multiply $ {g_e} =
9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}} $ with $ \dfrac{1}{6} $.
Complete step by step answer:
Given, gravitational force on the surface of the moon is only $ \dfrac{1}{6} $ as strong as gravitational force on the earth.
Mass of the object, $ m = 10\;{\rm{kg}} $
Step I:
We know that, acceleration due to gravity in the surface of the earth, $ {g_e} = 9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}} $.
Formula for weight is, $ W = m{g_e} $
Therefore, the weight of the object on earth is, $ W = m{g_e} $.
Substitute the values of $ m $ and $ {g_e} $ in the above equation.
Now, weight of the object on earth is,
$ \begin{array}{c}W = m{g_e}\\ = 10 \times 9.8\\
= 98\;{\rm{N}}\end{array} $
Step II:
Again, according to the question,
Acceleration due to gravity at moon,
$ \begin{array}{c}{g_m} = \dfrac{1}{6} \times 9.8\\ = 1.63\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\end{array} $
Therefore, the weight of the object on the moon is, $ W = m{g_m} $.
Substitute the values of $ m $ and $ {g_m} $ in the above equation.
Now, weight of the object on moon is,
$ \begin{array}{c}W = m{g_m}\\ = 10 \times 1.63\\ =
16.3\;{\rm{N}}\end{array} $
Hence, an object having a mass of $ 10\;{\rm{kg}} $ has the weights on the earth and the moon is $ 98\;{\rm{N}} $ and $ 16.3\;{\rm{N}} $ respectively.
Note:
Know the difference between mass and weight.
Mass: Mass is both a real body component, and a measurement of its acceleration resistance whenever a net force is applied. Kilogram is the fundamental SI unit of mass.
Weight: The weight of an object is the force of gravity acting on the body. Its SI units are
$ {\rm{kg}}{\rm{.m/}}{{\rm{s}}^{\rm{2}}} $ or Newton ($ {\rm{N}} $).
In step I, determine the weight of the object on the earth surface by multiplying the mass of the object to the acceleration due to gravity on earth.
In step II, determine the weight of the object on the moon surface by multiplying the mass of the object to the acceleration due to gravity on earth $ \times \dfrac{1}{6} $.
9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}} $ with $ \dfrac{1}{6} $.
Complete step by step answer:
Given, gravitational force on the surface of the moon is only $ \dfrac{1}{6} $ as strong as gravitational force on the earth.
Mass of the object, $ m = 10\;{\rm{kg}} $
Step I:
We know that, acceleration due to gravity in the surface of the earth, $ {g_e} = 9.8\;{\rm{m/}}{{\rm{s}}^{\rm{2}}} $.
Formula for weight is, $ W = m{g_e} $
Therefore, the weight of the object on earth is, $ W = m{g_e} $.
Substitute the values of $ m $ and $ {g_e} $ in the above equation.
Now, weight of the object on earth is,
$ \begin{array}{c}W = m{g_e}\\ = 10 \times 9.8\\
= 98\;{\rm{N}}\end{array} $
Step II:
Again, according to the question,
Acceleration due to gravity at moon,
$ \begin{array}{c}{g_m} = \dfrac{1}{6} \times 9.8\\ = 1.63\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}\end{array} $
Therefore, the weight of the object on the moon is, $ W = m{g_m} $.
Substitute the values of $ m $ and $ {g_m} $ in the above equation.
Now, weight of the object on moon is,
$ \begin{array}{c}W = m{g_m}\\ = 10 \times 1.63\\ =
16.3\;{\rm{N}}\end{array} $
Hence, an object having a mass of $ 10\;{\rm{kg}} $ has the weights on the earth and the moon is $ 98\;{\rm{N}} $ and $ 16.3\;{\rm{N}} $ respectively.
Note:
Know the difference between mass and weight.
Mass: Mass is both a real body component, and a measurement of its acceleration resistance whenever a net force is applied. Kilogram is the fundamental SI unit of mass.
Weight: The weight of an object is the force of gravity acting on the body. Its SI units are
$ {\rm{kg}}{\rm{.m/}}{{\rm{s}}^{\rm{2}}} $ or Newton ($ {\rm{N}} $).
In step I, determine the weight of the object on the earth surface by multiplying the mass of the object to the acceleration due to gravity on earth.
In step II, determine the weight of the object on the moon surface by multiplying the mass of the object to the acceleration due to gravity on earth $ \times \dfrac{1}{6} $.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE