Answer
Verified
429k+ views
Hint: Differentiation is the rate change of a function with respect to the variable on which the function depends. Here, the given question can differentiate the given function in two different ways. One by chain rule and the other way by quotient rule.
Complete step by step solution:
Let us first understand what is meant by differentiation.Differentiation in mathematics can be defined in many ways. Differentiation is the rate change of a function with respect to the variable on which the function depends. If we draw a graph of the function with respect to the independent variable, then the differentiation of the function at any point is the equal to the slope of the tangent to the curve of the function at that point. If the function is f(x) then differentiation of f(x) is written as $\dfrac{d}{dx}f(x)$.
Here, the given function is $f(x)=\dfrac{1}{\ln x}$
Therefore, differentiation of $\dfrac{1}{\ln x}$ is $\dfrac{d}{dx}\left( \dfrac{1}{\ln x} \right)=\dfrac{d}{dx}{{\left( \ln x \right)}^{-1}}$.
By using chain rule, we get that
$\dfrac{d}{dx}{{\left( \ln x \right)}^{-1}}=-1{{\left( \ln x \right)}^{-2}}.\dfrac{d}{dx}\ln x$ …… (i)
The differentiation of ln(x) is equal to $\dfrac{d}{dx}\ln x=\dfrac{1}{x}$.
Substitute this value in equation (i).
Then we get that,
$\dfrac{d}{dx}{{\left( \ln x \right)}^{-1}}=-1{{\left( \ln x \right)}^{-2}}.\dfrac{1}{x}$
Therefore, on further simplification we get that
$\therefore\dfrac{d}{dx}{{\left( \ln x \right)}^{-1}}=\dfrac{-1}{x{{\left( \ln x \right)}^{2}}}$.
Note:For the differentiation of the given function $f(x)=\dfrac{1}{\ln x}$ we can also use the product rule or quotient rule of differentiation. The product rule for the differentiation of a function $f(x)=g(x)h(x)$ is given as,
$\dfrac{d}{dx}f(x)=\left[ \dfrac{d}{dx}g(x) \right]h(x)+g(x)\left[ \dfrac{d}{dx}h(x) \right]$
The quotient rule for the differentiation of a function $f(x)=\dfrac{g(x)}{h(x)}$ is given as
$\dfrac{d}{dx}f(x)=\dfrac{\left[ \dfrac{d}{dx}g(x) \right]h(x)-g(x)\left[ \dfrac{d}{dx}h(x) \right]}{{{\left[ h(x) \right]}^{2}}}$
Therefore, we can use the quotient rule for the given function to differentiate as:
$\Rightarrow \dfrac{d}{dx}\left( \dfrac{1}{\ln x} \right)=\dfrac{\left[ \dfrac{d}{dx}(1) \right]\ln x-1.\left[ \dfrac{d}{dx}\ln x \right]}{{{\left( \ln x \right)}^{2}}}$
$\Rightarrow \dfrac{d}{dx}\left( \dfrac{1}{\ln x} \right)=\dfrac{0-\left[ \dfrac{1}{x} \right]}{{{\left( \ln x \right)}^{2}}}$
$\therefore \dfrac{d}{dx}\left( \dfrac{1}{\ln x} \right)=\dfrac{-1}{x{{\left( \ln x \right)}^{2}}}$
Complete step by step solution:
Let us first understand what is meant by differentiation.Differentiation in mathematics can be defined in many ways. Differentiation is the rate change of a function with respect to the variable on which the function depends. If we draw a graph of the function with respect to the independent variable, then the differentiation of the function at any point is the equal to the slope of the tangent to the curve of the function at that point. If the function is f(x) then differentiation of f(x) is written as $\dfrac{d}{dx}f(x)$.
Here, the given function is $f(x)=\dfrac{1}{\ln x}$
Therefore, differentiation of $\dfrac{1}{\ln x}$ is $\dfrac{d}{dx}\left( \dfrac{1}{\ln x} \right)=\dfrac{d}{dx}{{\left( \ln x \right)}^{-1}}$.
By using chain rule, we get that
$\dfrac{d}{dx}{{\left( \ln x \right)}^{-1}}=-1{{\left( \ln x \right)}^{-2}}.\dfrac{d}{dx}\ln x$ …… (i)
The differentiation of ln(x) is equal to $\dfrac{d}{dx}\ln x=\dfrac{1}{x}$.
Substitute this value in equation (i).
Then we get that,
$\dfrac{d}{dx}{{\left( \ln x \right)}^{-1}}=-1{{\left( \ln x \right)}^{-2}}.\dfrac{1}{x}$
Therefore, on further simplification we get that
$\therefore\dfrac{d}{dx}{{\left( \ln x \right)}^{-1}}=\dfrac{-1}{x{{\left( \ln x \right)}^{2}}}$.
Note:For the differentiation of the given function $f(x)=\dfrac{1}{\ln x}$ we can also use the product rule or quotient rule of differentiation. The product rule for the differentiation of a function $f(x)=g(x)h(x)$ is given as,
$\dfrac{d}{dx}f(x)=\left[ \dfrac{d}{dx}g(x) \right]h(x)+g(x)\left[ \dfrac{d}{dx}h(x) \right]$
The quotient rule for the differentiation of a function $f(x)=\dfrac{g(x)}{h(x)}$ is given as
$\dfrac{d}{dx}f(x)=\dfrac{\left[ \dfrac{d}{dx}g(x) \right]h(x)-g(x)\left[ \dfrac{d}{dx}h(x) \right]}{{{\left[ h(x) \right]}^{2}}}$
Therefore, we can use the quotient rule for the given function to differentiate as:
$\Rightarrow \dfrac{d}{dx}\left( \dfrac{1}{\ln x} \right)=\dfrac{\left[ \dfrac{d}{dx}(1) \right]\ln x-1.\left[ \dfrac{d}{dx}\ln x \right]}{{{\left( \ln x \right)}^{2}}}$
$\Rightarrow \dfrac{d}{dx}\left( \dfrac{1}{\ln x} \right)=\dfrac{0-\left[ \dfrac{1}{x} \right]}{{{\left( \ln x \right)}^{2}}}$
$\therefore \dfrac{d}{dx}\left( \dfrac{1}{\ln x} \right)=\dfrac{-1}{x{{\left( \ln x \right)}^{2}}}$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers