Answer
Verified
430.2k+ views
Hint: We explain the number of ways position of a point or equation can be expressed in different forms. To form the graph of $r=2-2\cos \theta $, we need to find its rectangular form. We also explain the ways the representation works for polar and cartesian form. Then we convert the given equation into rectangular form using the relations $x=r\cos \theta ;y=r\sin \theta $.
Complete step by step answer:
There are always two ways to represent any point equation in our general 2-D and 3-D surfaces. One being the polar form and other one being the cartesian form. The other name of the cartesian form is rectangular form.
In case of polar form, we use the distance and the angle from the origin to get the position of the point or curve.
The given equation $r=2-2\cos \theta $ is a representation of the polar form. r represents the distance and $\theta $ represents the angle.
In case of rectangular form, we use the coordinates from the origin to get the position of the point or curve. For two dimensional things we have X-Y and for three dimensional things we have X-Y-Z. We take the perpendicular distances from the axes.
We need to convert the given equation $r=2-2\cos \theta $ into the rectangular form.
The relation between these two forms in two-dimensional is
$x=r\cos \theta ;y=r\sin \theta ;{{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
From the relations we get $\cos \theta =\dfrac{x}{r}$.
We now replace the value of $\cos \theta =\dfrac{x}{r}$ in the equation $r=2-2\cos \theta $ to get
\[\begin{align}
& r=2-2\cos \theta \\
& \Rightarrow r=2-2\left( \dfrac{x}{r} \right) \\
& \Rightarrow r+\dfrac{2x}{r}=2 \\
\end{align}\]
We now take the square value of the equation \[r+\dfrac{2x}{r}=2\].
Taking square, we get
\[\begin{align}
& {{\left( r+\dfrac{2x}{r} \right)}^{2}}={{2}^{2}} \\
& \Rightarrow {{r}^{2}}+4x+\dfrac{4{{x}^{2}}}{{{r}^{2}}}=4 \\
\end{align}\]
We now replace the value of ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$ for the equation.
The revised equation becomes \[\left( {{x}^{2}}+{{y}^{2}} \right)+4x+\dfrac{4{{x}^{2}}}{{{x}^{2}}+{{y}^{2}}}=4\].
Note:
In case of points for cartesian form we use x and y coordinates as $\left( x,y \right)$ to express their position in the cartesian plane. The distance from origin is $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$. This r represents the distance in polar form.
Complete step by step answer:
There are always two ways to represent any point equation in our general 2-D and 3-D surfaces. One being the polar form and other one being the cartesian form. The other name of the cartesian form is rectangular form.
In case of polar form, we use the distance and the angle from the origin to get the position of the point or curve.
The given equation $r=2-2\cos \theta $ is a representation of the polar form. r represents the distance and $\theta $ represents the angle.
In case of rectangular form, we use the coordinates from the origin to get the position of the point or curve. For two dimensional things we have X-Y and for three dimensional things we have X-Y-Z. We take the perpendicular distances from the axes.
We need to convert the given equation $r=2-2\cos \theta $ into the rectangular form.
The relation between these two forms in two-dimensional is
$x=r\cos \theta ;y=r\sin \theta ;{{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
From the relations we get $\cos \theta =\dfrac{x}{r}$.
We now replace the value of $\cos \theta =\dfrac{x}{r}$ in the equation $r=2-2\cos \theta $ to get
\[\begin{align}
& r=2-2\cos \theta \\
& \Rightarrow r=2-2\left( \dfrac{x}{r} \right) \\
& \Rightarrow r+\dfrac{2x}{r}=2 \\
\end{align}\]
We now take the square value of the equation \[r+\dfrac{2x}{r}=2\].
Taking square, we get
\[\begin{align}
& {{\left( r+\dfrac{2x}{r} \right)}^{2}}={{2}^{2}} \\
& \Rightarrow {{r}^{2}}+4x+\dfrac{4{{x}^{2}}}{{{r}^{2}}}=4 \\
\end{align}\]
We now replace the value of ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$ for the equation.
The revised equation becomes \[\left( {{x}^{2}}+{{y}^{2}} \right)+4x+\dfrac{4{{x}^{2}}}{{{x}^{2}}+{{y}^{2}}}=4\].
Note:
In case of points for cartesian form we use x and y coordinates as $\left( x,y \right)$ to express their position in the cartesian plane. The distance from origin is $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$. This r represents the distance in polar form.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE