Answer
Verified
348k+ views
Hint: Given a problem to first identify the kind of given equation. Then find out the points of the given equation. So apply a few \[x\] values to find a few \[y\] values on the given equation. Now we have points of the equation. In these points, we arrange them correctly. Now labeled those points in the graph. Finally, we get the graph of the straight line.
Complete step-by-step answer:
Given equation is a linear equation and this equation is the straight-line format. Its means this is a straight line equation. The standard form linear equation is \[ax + by = c\] here, \[a,b\] and \[c\] are some constant values. And if a linear equation is in \[y = mx + c\] format, then the equation has a slope and intercept value. so the given equation has a slope and intercept.
The linear equation is \[y = 4x - 5\]
Any line equation can be graphed using some points, select few \[x\] values and plug them into the equation. then we find the corresponding \[y\] values. So we assume \[x\] values to find \[y\] values.
Assume that,
\[x = - 4\] apply the \[x\] value in equation \[y\] ,
$y = 4( - 4) - 5$
$ = - 16 - 5 $
$ = - 21$
\[x = - 3\] apply the \[x\] value in equation \[y\] ,
$ y = 4( - 3) - 5 $
$ = - 12 - 5 $
$ = - 17 $
\[x = - 2\] apply the \[x\] value in equation \[y\] ,
$ y = 4( - 2) - 5$
$ = - 8 - 5 $
$ = - 13 $
\[x = - 1\] apply the $x$value in equation \[y\] ,
$ y = 4( - 1) - 5 $
$ = - 4 - 5 $
$ = - 9 $
\[x = 0\] apply the \[x\] value in equation \[y\] ,
$ y = 4(0) - 5 $
$ = 0 - 5 $
$ = - 5 $
\[x = 1\] apply the \[x\] value in equation \[y\] ,
$ y = 4(1) - 5 $
$ = 4 - 5 $
$ = - 1 $
\[x = 2\] apply the \[x\] value in equation \[y\] ,
$ y = 4(2) - 5 $
$ = 8 - 5 $
$ = 3 $
\[x = 3\] apply the \[x\] value in equation \[y\] ,
$ y = 4(3) - 5 $
$ = 12 - 5 $
$ = 7 $
\[x = 4\] apply the \[x\] value in equation \[y\] ,
$ y = 4(4) - 5 $
$ = 16 - 5 $
$ = 11 $
Points are, \[( - 4, - 21),( - 3, - 17),( - 2, - 13),( - 1, - 9),(0, - 5),(1, - 1),(2,3),(3,7),(4,11)\]
Label the points in the graph and draw a straight line.
Then we get a graph of \[y = 4x - 5\]
The graph is
Note: In linear equation is given the straight-line graph. Find points of the equation in some particular interval. So given the problem, find the values in between \[t\] \[x \in \left[ { - 4,4} \right]\] this interval. Now find the values in a small region. Find the points in the label to the graph. Now we get the straight-line graph on the given equation. And carefully, labeled the find out points in the graph.
Complete step-by-step answer:
Given equation is a linear equation and this equation is the straight-line format. Its means this is a straight line equation. The standard form linear equation is \[ax + by = c\] here, \[a,b\] and \[c\] are some constant values. And if a linear equation is in \[y = mx + c\] format, then the equation has a slope and intercept value. so the given equation has a slope and intercept.
The linear equation is \[y = 4x - 5\]
Any line equation can be graphed using some points, select few \[x\] values and plug them into the equation. then we find the corresponding \[y\] values. So we assume \[x\] values to find \[y\] values.
Assume that,
\[x = - 4\] apply the \[x\] value in equation \[y\] ,
$y = 4( - 4) - 5$
$ = - 16 - 5 $
$ = - 21$
\[x = - 3\] apply the \[x\] value in equation \[y\] ,
$ y = 4( - 3) - 5 $
$ = - 12 - 5 $
$ = - 17 $
\[x = - 2\] apply the \[x\] value in equation \[y\] ,
$ y = 4( - 2) - 5$
$ = - 8 - 5 $
$ = - 13 $
\[x = - 1\] apply the $x$value in equation \[y\] ,
$ y = 4( - 1) - 5 $
$ = - 4 - 5 $
$ = - 9 $
\[x = 0\] apply the \[x\] value in equation \[y\] ,
$ y = 4(0) - 5 $
$ = 0 - 5 $
$ = - 5 $
\[x = 1\] apply the \[x\] value in equation \[y\] ,
$ y = 4(1) - 5 $
$ = 4 - 5 $
$ = - 1 $
\[x = 2\] apply the \[x\] value in equation \[y\] ,
$ y = 4(2) - 5 $
$ = 8 - 5 $
$ = 3 $
\[x = 3\] apply the \[x\] value in equation \[y\] ,
$ y = 4(3) - 5 $
$ = 12 - 5 $
$ = 7 $
\[x = 4\] apply the \[x\] value in equation \[y\] ,
$ y = 4(4) - 5 $
$ = 16 - 5 $
$ = 11 $
Points are, \[( - 4, - 21),( - 3, - 17),( - 2, - 13),( - 1, - 9),(0, - 5),(1, - 1),(2,3),(3,7),(4,11)\]
Label the points in the graph and draw a straight line.
Then we get a graph of \[y = 4x - 5\]
The graph is
Note: In linear equation is given the straight-line graph. Find points of the equation in some particular interval. So given the problem, find the values in between \[t\] \[x \in \left[ { - 4,4} \right]\] this interval. Now find the values in a small region. Find the points in the label to the graph. Now we get the straight-line graph on the given equation. And carefully, labeled the find out points in the graph.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Which is the first open university in India A Andhra class 10 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE