Identify and write the like terms in each of the following groups.
\[ - x{y^2}, - 4y{x^2},8{x^2},2x{y^2},7y, - 11{x^2} - 100x, - 11yx,20{x^2}y, - 6{x^2},y,2xy,3x\]
Answer
Verified
483.3k+ views
Hint:The terms having the same variable with same exponents are called like terms. Check the variables and exponents of all the variables. Then the terms with the similar exponents and variables will come under like terms.
Complete step-by-step answer:
Let us consider the given terms,
Here, the given terms are \[ - x{y^2}, - 4y{x^2},8{x^2},2x{y^2},7y, - 11{x^2} - 100x, - 11yx,20{x^2}y, - 6{x^2},y,2xy,3x\] and amongst these terms. We have checked among the all there is any same literal (variable) in the terms. If there are any terms on it. It is like a term. Let's check with the terms who choose randomly.
Take the terms \[7y\] and \[y\],
\[7y\] and \[y\] are like terms. Since they contain the same variable \[y\] to the same power, the power \[y\] of is 1 in both terms. Therefore the terms \[7y\] and \[y\] are like terms.
Take the terms \[ - 11yx\] and \[2xy\],
\[ - 11yx\] and \[2xy\] are like terms. Since they contain the same variable \[x\] and \[y\] to the same power, the power of \[x\] is 1 and the power of \[y\] is also 1. Therefore the terms \[ - 11yx\] and \[2xy\] are like terms
Take the terms \[8{x^2}\] and \[ - 6{x^2}\],
\[8{x^2}\] and \[ - 6{x^2}\]are like terms. Since they contain the same variable \[x\] to the same power, the powers of \[x\] is 2 in both terms. Therefore the terms \[8{x^2}\] and \[ - 6{x^2}\] are like terms.
Take the terms \[ - 4y{x^2}\] and \[20{x^2}y\],\[2x{y^2}\]
\[ - 4y{x^2}\] and \[20{x^2}y\] are like terms. Since they contain the same variable \[x\] and \[y\] to the same power, the powers of \[x\] is 2 and the power of \[y\] is 1. Therefore the terms \[ - 4y{x^2}\] and \[20{x^2}y\] are like terms.
Also, \[ - x{y^2}\] and are like terms. Since they contain the same variable \[x\] and \[y\] to the same power, the powers of \[y\] is 2 and the power of \[x\] is 1. Therefore the terms \[ - x{y^2}\] and \[2x{y^2}\] are also like terms.
Hence, the like terms are \[\left( {7y,y} \right),\left( {8{x^2}, - 6{x^2}} \right),\left( { - 11yx,2xy} \right),\left( { - x{y^2},2x{y^2}} \right),and\left( { - 4y{x^2},20{x^2}y} \right)\]
Note:We know that like terms are terms that contain the same variables raised to the same exponent (power). Only the numerical coefficients are different.
Constants are always said to be like terms because in every constant term there may be any number of variables which have the exponent zero.
Unlike terms are the terms which have different variables and exponents.
Complete step-by-step answer:
Let us consider the given terms,
Here, the given terms are \[ - x{y^2}, - 4y{x^2},8{x^2},2x{y^2},7y, - 11{x^2} - 100x, - 11yx,20{x^2}y, - 6{x^2},y,2xy,3x\] and amongst these terms. We have checked among the all there is any same literal (variable) in the terms. If there are any terms on it. It is like a term. Let's check with the terms who choose randomly.
Take the terms \[7y\] and \[y\],
\[7y\] and \[y\] are like terms. Since they contain the same variable \[y\] to the same power, the power \[y\] of is 1 in both terms. Therefore the terms \[7y\] and \[y\] are like terms.
Take the terms \[ - 11yx\] and \[2xy\],
\[ - 11yx\] and \[2xy\] are like terms. Since they contain the same variable \[x\] and \[y\] to the same power, the power of \[x\] is 1 and the power of \[y\] is also 1. Therefore the terms \[ - 11yx\] and \[2xy\] are like terms
Take the terms \[8{x^2}\] and \[ - 6{x^2}\],
\[8{x^2}\] and \[ - 6{x^2}\]are like terms. Since they contain the same variable \[x\] to the same power, the powers of \[x\] is 2 in both terms. Therefore the terms \[8{x^2}\] and \[ - 6{x^2}\] are like terms.
Take the terms \[ - 4y{x^2}\] and \[20{x^2}y\],\[2x{y^2}\]
\[ - 4y{x^2}\] and \[20{x^2}y\] are like terms. Since they contain the same variable \[x\] and \[y\] to the same power, the powers of \[x\] is 2 and the power of \[y\] is 1. Therefore the terms \[ - 4y{x^2}\] and \[20{x^2}y\] are like terms.
Also, \[ - x{y^2}\] and are like terms. Since they contain the same variable \[x\] and \[y\] to the same power, the powers of \[y\] is 2 and the power of \[x\] is 1. Therefore the terms \[ - x{y^2}\] and \[2x{y^2}\] are also like terms.
Hence, the like terms are \[\left( {7y,y} \right),\left( {8{x^2}, - 6{x^2}} \right),\left( { - 11yx,2xy} \right),\left( { - x{y^2},2x{y^2}} \right),and\left( { - 4y{x^2},20{x^2}y} \right)\]
Note:We know that like terms are terms that contain the same variables raised to the same exponent (power). Only the numerical coefficients are different.
Constants are always said to be like terms because in every constant term there may be any number of variables which have the exponent zero.
Unlike terms are the terms which have different variables and exponents.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Write the following in Roman numerals 25819 class 7 maths CBSE
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
The Island of Bombay was given to the English Prince class 7 social science CBSE
Convert 200 Million dollars in rupees class 7 maths CBSE
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
What are the controls affecting the climate of Ind class 7 social science CBSE
The southernmost point of the Indian mainland is known class 7 social studies CBSE