![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
If ${5^{56}}{\left( {\dfrac{1}{5}} \right)^{\text{x}}}{\left( {\dfrac{1}{5}} \right)^{\sqrt {\text{x}} }}$> 1, then x belongs to
A. (0, 49)
B. (49, 64)
C. (0, 64)
D. (49, 64)
Answer
510.6k+ views
Hint: Any number to the power of zero is equal to one. The square root of any rational number is always greater than or equal to zero. If the multiple of two numbers is less than zero then only one of the two numbers could be less than zero.
Complete step-by-step answer:
Given Data –
${5^{56}}{\left( {\dfrac{1}{5}} \right)^{\text{x}}}{\left( {\dfrac{1}{5}} \right)^{\sqrt {\text{x}} }}$> 1,
The given inequality is only true for x≥0.
The laws of exponents states that for a given number ‘a’
\[
{\text{1}}{\text{. }}{{\text{a}}^{\text{m}}} \times {{\text{a}}^{\text{n}}} = {{\text{a}}^{\left( {{\text{m + n}}} \right)}} \\
2.\dfrac{{{{\text{a}}^{\text{m}}}}}{{{{\text{a}}^{\text{n}}}}} = {{\text{a}}^{\left( {{\text{m - n}}} \right)}} \\
\]
$
\Rightarrow {\left( {\dfrac{1}{5}} \right)^{\text{x}}}{\left( {\dfrac{1}{5}} \right)^{\sqrt {\text{x}} }} = \left( {\dfrac{{{1^{\text{x}}} \times {1^{\sqrt {\text{x}} }}}}{{{5^{\text{x}}} \times {5^{\sqrt {\text{x}} }}}}} \right) \\
\\
$
One to the power of anything equals to one itself.
$ \Rightarrow \left( {\dfrac{1}{{{5^{{\text{x + }}\sqrt {\text{x}} }}}}} \right)$
Now our inequality looks like this,
$
{5^{56}}\left( {\dfrac{1}{{{5^{{\text{x + }}\sqrt {\text{x}} }}}}} \right) > 1 \\
\Rightarrow {5^{56{\text{ - x - }}\sqrt {\text{x}} }} > 1 \\
$
1 can be expressed as ${5^0}$ (5 to the power of zero)
\[
\Rightarrow {5^{56 - {\text{x - }}\sqrt {\text{x}} }} > {5^0} \\
\Rightarrow 56 - {\text{x - }}\sqrt {\text{x}} > 0 \\
{\text{ }} \\
\]
\[56 - {\text{x - }}\sqrt {\text{x}} \]Can be expressed as \[{\text{56 - x + 7}}\sqrt {\text{x}} {\text{ - 8}}\sqrt {\text{x}} \]
\[
\Rightarrow 7\left( {\sqrt {\text{x}} + 8} \right) - \sqrt {\text{x}} \left( {\sqrt {\text{x}} + 8} \right) \\
\Rightarrow \left( {\sqrt {\text{x}} + 8} \right)\left( {7 - \sqrt {\text{x}} } \right) > 0 \\
\Rightarrow \left( {\sqrt {\text{x}} + 8} \right)\left( {\sqrt {\text{x}} - 7} \right) < 0 \\
\]
As \[\left( {\sqrt {\text{x}} + 8} \right)\]is positive for all rational numbers, that means
\[\left( {\sqrt {\text{x}} - 7} \right)\]Should be negative. (i.e. <0)
\[ \Rightarrow \sqrt {\text{x}} < 7\]
Squaring on both sides
\[
\Rightarrow {\text{x}} < 49 \\
\Rightarrow 0 \leqslant {\text{x < 49}} \\
\]
Hence x belongs to (0, 49) which makes Option A the correct answer.
Note –
In such types of questions first simplify the equation by bringing all the exponents of the same number together using the laws of exponents, then compare it as a whole to the other part of the inequality. Then simplify the equation accordingly and find out the factors if there are any in order to obtain the limits of the required number. Properties of rational numbers come in handy while solving these types of questions.
Complete step-by-step answer:
Given Data –
${5^{56}}{\left( {\dfrac{1}{5}} \right)^{\text{x}}}{\left( {\dfrac{1}{5}} \right)^{\sqrt {\text{x}} }}$> 1,
The given inequality is only true for x≥0.
The laws of exponents states that for a given number ‘a’
\[
{\text{1}}{\text{. }}{{\text{a}}^{\text{m}}} \times {{\text{a}}^{\text{n}}} = {{\text{a}}^{\left( {{\text{m + n}}} \right)}} \\
2.\dfrac{{{{\text{a}}^{\text{m}}}}}{{{{\text{a}}^{\text{n}}}}} = {{\text{a}}^{\left( {{\text{m - n}}} \right)}} \\
\]
$
\Rightarrow {\left( {\dfrac{1}{5}} \right)^{\text{x}}}{\left( {\dfrac{1}{5}} \right)^{\sqrt {\text{x}} }} = \left( {\dfrac{{{1^{\text{x}}} \times {1^{\sqrt {\text{x}} }}}}{{{5^{\text{x}}} \times {5^{\sqrt {\text{x}} }}}}} \right) \\
\\
$
One to the power of anything equals to one itself.
$ \Rightarrow \left( {\dfrac{1}{{{5^{{\text{x + }}\sqrt {\text{x}} }}}}} \right)$
Now our inequality looks like this,
$
{5^{56}}\left( {\dfrac{1}{{{5^{{\text{x + }}\sqrt {\text{x}} }}}}} \right) > 1 \\
\Rightarrow {5^{56{\text{ - x - }}\sqrt {\text{x}} }} > 1 \\
$
1 can be expressed as ${5^0}$ (5 to the power of zero)
\[
\Rightarrow {5^{56 - {\text{x - }}\sqrt {\text{x}} }} > {5^0} \\
\Rightarrow 56 - {\text{x - }}\sqrt {\text{x}} > 0 \\
{\text{ }} \\
\]
\[56 - {\text{x - }}\sqrt {\text{x}} \]Can be expressed as \[{\text{56 - x + 7}}\sqrt {\text{x}} {\text{ - 8}}\sqrt {\text{x}} \]
\[
\Rightarrow 7\left( {\sqrt {\text{x}} + 8} \right) - \sqrt {\text{x}} \left( {\sqrt {\text{x}} + 8} \right) \\
\Rightarrow \left( {\sqrt {\text{x}} + 8} \right)\left( {7 - \sqrt {\text{x}} } \right) > 0 \\
\Rightarrow \left( {\sqrt {\text{x}} + 8} \right)\left( {\sqrt {\text{x}} - 7} \right) < 0 \\
\]
As \[\left( {\sqrt {\text{x}} + 8} \right)\]is positive for all rational numbers, that means
\[\left( {\sqrt {\text{x}} - 7} \right)\]Should be negative. (i.e. <0)
\[ \Rightarrow \sqrt {\text{x}} < 7\]
Squaring on both sides
\[
\Rightarrow {\text{x}} < 49 \\
\Rightarrow 0 \leqslant {\text{x < 49}} \\
\]
Hence x belongs to (0, 49) which makes Option A the correct answer.
Note –
In such types of questions first simplify the equation by bringing all the exponents of the same number together using the laws of exponents, then compare it as a whole to the other part of the inequality. Then simplify the equation accordingly and find out the factors if there are any in order to obtain the limits of the required number. Properties of rational numbers come in handy while solving these types of questions.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The length and width of a rectangle are in ratio of class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the income to the expenditure of a family class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you write 025 million in scientific notatio class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you convert 295 meters per second to kilometers class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write the following in Roman numerals 25819 class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The Island of Bombay was given to the English Prince class 7 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Convert 200 Million dollars in rupees class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What are the controls affecting the climate of Ind class 7 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The southernmost point of the Indian mainland is known class 7 social studies CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)