Answer
Verified
449.7k+ views
Hint: We will first start by using the property of ${}^{n}{{P}_{r}}$ that is ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. Then, we will use this property to expand the terms and further simplify the expression. Then, finally we will equate it to $\dfrac{30800}{1}$ to find the value of r.
Complete step-by-step answer:
Now, we have been given that,
$\dfrac{{}^{56}{{P}_{6+r}}}{{}^{54}{{P}_{3+r}}}=\dfrac{30800}{1}$
Now, we know that the value of ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. So, using this we will expand the terms of $\dfrac{{}^{56}{{P}_{6+r}}}{{}^{54}{{P}_{3+r}}}=\dfrac{30800}{1}$ as below,
$\dfrac{\dfrac{56!}{\left( 56-6-r \right)!}}{\dfrac{54!}{\left( 54-3-r \right)!}}=\dfrac{30800}{1}$
Now, we will solve the denominator of the both the expression in numerator and denominator.
$\dfrac{\dfrac{56!}{\left( 50-r \right)!}}{\dfrac{54!}{\left( 51-r \right)!}}=\dfrac{30800}{1}$
Now, we will simplify the left hand side of the equation.
$\dfrac{56!\times \left( 51-r \right)!}{\left( 50-r \right)!\times 54!}=\dfrac{30800}{1}$
Now, we will solve the numerator and denominator by expanding the numerator and denominator using $n!=\left( n-1 \right)!\times n!$ and cancelling the same terms in numerator and denominator.
$\Rightarrow \dfrac{55\times 56\times \left( 51-r \right)!}{\left( 50-r \right)!}=\dfrac{30800}{1}$
Now, we know that $n!=\left( n-1 \right)!\times n$. So, we can write $\left( 51-r \right)!=\left( 50-r \right)!\left( 51-r \right)!$.
$\begin{align}
& \Rightarrow \dfrac{55\times 56\times \left( 50-r \right)!\left( 51-r \right)}{\left( 50-r \right)!}=\dfrac{30800}{1} \\
& 55\times 56\times \left( 51-r \right)=30800 \\
\end{align}$
Now, we will simplify the equation further by taking the constant multiplication terms in left side to division in right side and solve it further to find the value of r.
$\begin{align}
& \left( 51-r \right)=\dfrac{30800}{55\times 56} \\
&\Rightarrow \left( 51-r \right)=\dfrac{560}{56} \\
&\Rightarrow 51-r=10 \\
&\Rightarrow 51-10=r \\
&\Rightarrow r=41 \\
\end{align}$
So, the value of r is 41.
Note: It is important to note that we have used the fact that $n!=\left( n-1 \right)n$ to solve the ratio $\dfrac{\left( 51-r \right)!}{\left( 50-r \right)!}$ . The students must make sure to use this fact accurately, only then they will be able to cancel off terms and simplify further. Also, it is advisable to remember that ${}^{n}{{P}_{r}}={}^{n}{{C}_{r}}\times r!$.
Complete step-by-step answer:
Now, we have been given that,
$\dfrac{{}^{56}{{P}_{6+r}}}{{}^{54}{{P}_{3+r}}}=\dfrac{30800}{1}$
Now, we know that the value of ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. So, using this we will expand the terms of $\dfrac{{}^{56}{{P}_{6+r}}}{{}^{54}{{P}_{3+r}}}=\dfrac{30800}{1}$ as below,
$\dfrac{\dfrac{56!}{\left( 56-6-r \right)!}}{\dfrac{54!}{\left( 54-3-r \right)!}}=\dfrac{30800}{1}$
Now, we will solve the denominator of the both the expression in numerator and denominator.
$\dfrac{\dfrac{56!}{\left( 50-r \right)!}}{\dfrac{54!}{\left( 51-r \right)!}}=\dfrac{30800}{1}$
Now, we will simplify the left hand side of the equation.
$\dfrac{56!\times \left( 51-r \right)!}{\left( 50-r \right)!\times 54!}=\dfrac{30800}{1}$
Now, we will solve the numerator and denominator by expanding the numerator and denominator using $n!=\left( n-1 \right)!\times n!$ and cancelling the same terms in numerator and denominator.
$\Rightarrow \dfrac{55\times 56\times \left( 51-r \right)!}{\left( 50-r \right)!}=\dfrac{30800}{1}$
Now, we know that $n!=\left( n-1 \right)!\times n$. So, we can write $\left( 51-r \right)!=\left( 50-r \right)!\left( 51-r \right)!$.
$\begin{align}
& \Rightarrow \dfrac{55\times 56\times \left( 50-r \right)!\left( 51-r \right)}{\left( 50-r \right)!}=\dfrac{30800}{1} \\
& 55\times 56\times \left( 51-r \right)=30800 \\
\end{align}$
Now, we will simplify the equation further by taking the constant multiplication terms in left side to division in right side and solve it further to find the value of r.
$\begin{align}
& \left( 51-r \right)=\dfrac{30800}{55\times 56} \\
&\Rightarrow \left( 51-r \right)=\dfrac{560}{56} \\
&\Rightarrow 51-r=10 \\
&\Rightarrow 51-10=r \\
&\Rightarrow r=41 \\
\end{align}$
So, the value of r is 41.
Note: It is important to note that we have used the fact that $n!=\left( n-1 \right)n$ to solve the ratio $\dfrac{\left( 51-r \right)!}{\left( 50-r \right)!}$ . The students must make sure to use this fact accurately, only then they will be able to cancel off terms and simplify further. Also, it is advisable to remember that ${}^{n}{{P}_{r}}={}^{n}{{C}_{r}}\times r!$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE