Answer
Verified
449.4k+ views
Hint: We can split the left hand side of the given equation. $7$ in the equation can be replaced as $4 + 3$. So we can take three as common on the LHS. Then we can apply the trigonometric relation of ${\sin ^2}x + {\cos ^2}x$. Now we can simplify the equation. Using the sine value we can find the angle and so we can find the tangent value.
Formula used: For angles in radians we have,
$\sin \dfrac{\pi }{6} = \dfrac{1}{2}$
$\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}$
For any angle $x$ we have, \[{\sin ^2}x + {\cos ^2}x = 1\]
Complete step-by-step solution:
Given that \[7{\sin ^2}x + 3{\cos ^2}x = 4\]
Since $7{\sin ^2}x = 4{\sin ^2}x + 3{\sin ^2}x$
We can write,
$\Rightarrow$\[4{\sin ^2}x + 3{\sin ^2}x + 3{\cos ^2}x = 4\]
Taking $3$ common from the second and third terms we have,
$\Rightarrow$\[4{\sin ^2}x + 3({\sin ^2}x + {\cos ^2}x) = 4\]
We know \[{\sin ^2}x + {\cos ^2}x = 1\]
Substituting this we have,
$\Rightarrow$\[4{\sin ^2}x + 3 \times 1 = 4\]
\[ \Rightarrow 4{\sin ^2}x + 3 = 4\]
Subtracting $3$ from both sides we get,
$\Rightarrow$\[4{\sin ^2}x + 3 - 3 = 4 - 3\]
\[ \Rightarrow 4{\sin ^2}x = 1\]
Dividing both sides by $4$ we get,
$\Rightarrow$\[{\sin ^2}x = \dfrac{1}{4}\]
Taking square roots on both sides we have,
$\Rightarrow$\[\sin x = \pm \dfrac{1}{2}\]
Considering positive root we have \[\sin x = \dfrac{1}{2}\]
This gives $x = \dfrac{\pi }{6}$, since $\sin \dfrac{\pi }{6} = \dfrac{1}{2}$
Using this we can find the value of $\tan x$.
So $\tan x = \tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}$
Hence we had proved the given statement.
Additional Information: In a right angled triangle with one of the non-right angles $\theta $, $\sin \theta $ refers to the ratio of the opposite side of the angle $\theta $ to the hypotenuse and $\cos \theta $ refers to the ratio of the adjacent side of the angle $\theta $ to the hypotenuse. Whereas the $\tan \theta $ refers to the ratio of the opposite side of the angle $\theta $ to the adjacent side of the angle $\theta $.
Note: Actually sin function is a periodic function with period \[2\pi \]. But here we considered only one angle of sine which gives the value $\dfrac{1}{2}$. So we got the value $\dfrac{\pi }{6}$ for $x$.
Formula used: For angles in radians we have,
$\sin \dfrac{\pi }{6} = \dfrac{1}{2}$
$\tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}$
For any angle $x$ we have, \[{\sin ^2}x + {\cos ^2}x = 1\]
Complete step-by-step solution:
Given that \[7{\sin ^2}x + 3{\cos ^2}x = 4\]
Since $7{\sin ^2}x = 4{\sin ^2}x + 3{\sin ^2}x$
We can write,
$\Rightarrow$\[4{\sin ^2}x + 3{\sin ^2}x + 3{\cos ^2}x = 4\]
Taking $3$ common from the second and third terms we have,
$\Rightarrow$\[4{\sin ^2}x + 3({\sin ^2}x + {\cos ^2}x) = 4\]
We know \[{\sin ^2}x + {\cos ^2}x = 1\]
Substituting this we have,
$\Rightarrow$\[4{\sin ^2}x + 3 \times 1 = 4\]
\[ \Rightarrow 4{\sin ^2}x + 3 = 4\]
Subtracting $3$ from both sides we get,
$\Rightarrow$\[4{\sin ^2}x + 3 - 3 = 4 - 3\]
\[ \Rightarrow 4{\sin ^2}x = 1\]
Dividing both sides by $4$ we get,
$\Rightarrow$\[{\sin ^2}x = \dfrac{1}{4}\]
Taking square roots on both sides we have,
$\Rightarrow$\[\sin x = \pm \dfrac{1}{2}\]
Considering positive root we have \[\sin x = \dfrac{1}{2}\]
This gives $x = \dfrac{\pi }{6}$, since $\sin \dfrac{\pi }{6} = \dfrac{1}{2}$
Using this we can find the value of $\tan x$.
So $\tan x = \tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}$
Hence we had proved the given statement.
Additional Information: In a right angled triangle with one of the non-right angles $\theta $, $\sin \theta $ refers to the ratio of the opposite side of the angle $\theta $ to the hypotenuse and $\cos \theta $ refers to the ratio of the adjacent side of the angle $\theta $ to the hypotenuse. Whereas the $\tan \theta $ refers to the ratio of the opposite side of the angle $\theta $ to the adjacent side of the angle $\theta $.
Note: Actually sin function is a periodic function with period \[2\pi \]. But here we considered only one angle of sine which gives the value $\dfrac{1}{2}$. So we got the value $\dfrac{\pi }{6}$ for $x$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE