Answer
Verified
396.3k+ views
Hint: We know that A.M. is arithmetic mean, and G.M. is geometric mean, and A.M and G.M. for two numbers say ‘a’ and ‘b’ will be \[\dfrac{{a + b}}{2}\] and \[\sqrt[{}]{{ab}}\] respectively. We will make a quadratic equation using it, and the roots of the equation gives the value of the numbers which we have to prove.
Complete step-by-step solution:
Given, A and G are A.M and G.M between two numbers. Let the two numbers be ‘a’ and ‘b’, we know that A.M between two numbers is the average of two numbers and G.M between two numbers is the square root of the product of the numbers.
Then, \[A = \dfrac{{a + b}}{2}\] and \[G = \sqrt {ab} \]
Simplifying them, we get:
\[ \Rightarrow a + b = 2A\,\,\,\,\,---------- equation\,1\]
and,
\[ \Rightarrow ab = {G^2}\,\,\,\,\, -------- equation\,2\]
\[\Rightarrow {\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab \\
\Rightarrow {\left( {a - b} \right)^2} = {\left( {2A} \right)^2} - 4{G^2} \\
\Rightarrow {\left( {a - b} \right)^2} = 4\left( {{A^2} - {G^2}} \right) \\
\Rightarrow \left( {a - b} \right) = \pm 2\sqrt {{A^2} - {G^2}} \,\,--- equation\,3\]
Taking equation 1 and equation 2 we get,
\[
\Rightarrow a - b = 2\sqrt {{A^2} - {G^2}} \\
\Rightarrow a + b = 2A \]
Now adding both we get:
\[ \Rightarrow a = A + \sqrt {{A^2} - {G^2}} \]
Putting this value of ‘a’ in equation 1, we get:
\[ \Rightarrow a + b = 2A \\
\Rightarrow A + \sqrt {{A^2} - {G^2}} + b = 2A \]
Calculating the value of ‘b’, we get:
\[ \Rightarrow b = A - \sqrt {{A^2} - {G^2}} \]
This equation can also we written as:
\[ = A - \sqrt {\left( {A + G} \right)\left( {A - G} \right)} \]
Hence, the numbers are \[A \pm \sqrt {{A^2} - {G^2}} \]
Note: We have to be careful while solving quadratic equation questions as there are chances of mistakes with signs while finding the roots. Sometimes the students try to use factorization methods to solve the quadratic equation, but in this type of questions, it is not recommended at all. Always try to use the quadratic formula for solving.
Complete step-by-step solution:
Given, A and G are A.M and G.M between two numbers. Let the two numbers be ‘a’ and ‘b’, we know that A.M between two numbers is the average of two numbers and G.M between two numbers is the square root of the product of the numbers.
Then, \[A = \dfrac{{a + b}}{2}\] and \[G = \sqrt {ab} \]
Simplifying them, we get:
\[ \Rightarrow a + b = 2A\,\,\,\,\,---------- equation\,1\]
and,
\[ \Rightarrow ab = {G^2}\,\,\,\,\, -------- equation\,2\]
\[\Rightarrow {\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab \\
\Rightarrow {\left( {a - b} \right)^2} = {\left( {2A} \right)^2} - 4{G^2} \\
\Rightarrow {\left( {a - b} \right)^2} = 4\left( {{A^2} - {G^2}} \right) \\
\Rightarrow \left( {a - b} \right) = \pm 2\sqrt {{A^2} - {G^2}} \,\,--- equation\,3\]
Taking equation 1 and equation 2 we get,
\[
\Rightarrow a - b = 2\sqrt {{A^2} - {G^2}} \\
\Rightarrow a + b = 2A \]
Now adding both we get:
\[ \Rightarrow a = A + \sqrt {{A^2} - {G^2}} \]
Putting this value of ‘a’ in equation 1, we get:
\[ \Rightarrow a + b = 2A \\
\Rightarrow A + \sqrt {{A^2} - {G^2}} + b = 2A \]
Calculating the value of ‘b’, we get:
\[ \Rightarrow b = A - \sqrt {{A^2} - {G^2}} \]
This equation can also we written as:
\[ = A - \sqrt {\left( {A + G} \right)\left( {A - G} \right)} \]
Hence, the numbers are \[A \pm \sqrt {{A^2} - {G^2}} \]
Note: We have to be careful while solving quadratic equation questions as there are chances of mistakes with signs while finding the roots. Sometimes the students try to use factorization methods to solve the quadratic equation, but in this type of questions, it is not recommended at all. Always try to use the quadratic formula for solving.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE