
If $A$ be the A.M. and $H$ be the H.M. between two numbers $a$ and $b$, then show that
$\dfrac{{a - A}}{{a - H}} \times \dfrac{{b - A}}{{b - H}} = \dfrac{A}{H}$
Answer
623.1k+ views
Hint- Simply put the general values of A.M. and H.M. in the L.H.S. of the equation and manipulate some terms.
We know that
$\because A$ is the A.M. of the numbers $a, b$
\[\therefore A = \dfrac{{a + b}}{2}\]
$\because H$ is the H.M. of the numbers $a, b$
$\therefore H = \dfrac{{2ab}}{{a + b}}$
Now substituting this in the L.H.S. of the given question
$
\Rightarrow \dfrac{{a - A}}{{a - H}} \times \dfrac{{b - A}}{{b - H}} \\
\Rightarrow \dfrac{{a - \dfrac{{a + b}}{2}}}{{a - \dfrac{{2ab}}{{a + b}}}} \times \dfrac{{b - \dfrac{{a + b}}{2}}}{{b - \dfrac{{2ab}}{{a + b}}}} \\
$
Further solving the numerator and denominator by taking LCM
$
\Rightarrow \dfrac{{\dfrac{{2a - a - b}}{2}}}{{\dfrac{{{a^2} + ab - 2ab}}{{a + b}}}} \times \dfrac{{\dfrac{{2b - a - b}}{2}}}{{\dfrac{{{b^2} + ab - 2ab}}{{a + b}}}} \\
\Rightarrow \dfrac{{\dfrac{{a - b}}{2}}}{{\dfrac{{{a^2} - ab}}{{a + b}}}} \times \dfrac{{\dfrac{{b - a}}{2}}}{{\dfrac{{{b^2} - ab}}{{a + b}}}} \\
\Rightarrow \dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{2\left( {{a^2} - ab} \right)}} \times \dfrac{{\left( {b - a} \right)\left( {a + b} \right)}}{{2\left( {{b^2} - ab} \right)}} \\
\Rightarrow \dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{2a\left( {a - b} \right)}} \times \dfrac{{\left( {b - a} \right)\left( {a + b} \right)}}{{2b\left( {b - a} \right)}} \\
$
Now cancelling the common terms from the numerator and denominator
$ \Rightarrow \dfrac{{a + b}}{{2a}} \times \dfrac{{a + b}}{{2b}}$
Above equation can be manipulated as done below in order to obtain the R.H.S.
$
\Rightarrow \dfrac{{a + b}}{2} \times \dfrac{{a + b}}{{2ab}} \\
\Rightarrow \dfrac{{\left( {\dfrac{{a + b}}{2}} \right)}}{{\left( {\dfrac{{2ab}}{{a + b}}} \right)}} \\
$
As we know that
$
\because \dfrac{{a + b}}{2} = A{\text{ and }}\dfrac{{2ab}}{{a + b}} = H \\
\Rightarrow \dfrac{A}{H} \\
$
It becomes equal to the R.H.S.
Hence, the equation in the question is proved.
Note- Arithmetic mean and harmonic mean are one of the most important concepts and are used in almost all types of problems. Arithmetic mean represents a number that is obtained by dividing the sum of the elements of a set by the number of values in the set. The harmonic mean is defined as the reciprocal of the arithmetic mean of the given data values. It is based on all values present in the set.
We know that
$\because A$ is the A.M. of the numbers $a, b$
\[\therefore A = \dfrac{{a + b}}{2}\]
$\because H$ is the H.M. of the numbers $a, b$
$\therefore H = \dfrac{{2ab}}{{a + b}}$
Now substituting this in the L.H.S. of the given question
$
\Rightarrow \dfrac{{a - A}}{{a - H}} \times \dfrac{{b - A}}{{b - H}} \\
\Rightarrow \dfrac{{a - \dfrac{{a + b}}{2}}}{{a - \dfrac{{2ab}}{{a + b}}}} \times \dfrac{{b - \dfrac{{a + b}}{2}}}{{b - \dfrac{{2ab}}{{a + b}}}} \\
$
Further solving the numerator and denominator by taking LCM
$
\Rightarrow \dfrac{{\dfrac{{2a - a - b}}{2}}}{{\dfrac{{{a^2} + ab - 2ab}}{{a + b}}}} \times \dfrac{{\dfrac{{2b - a - b}}{2}}}{{\dfrac{{{b^2} + ab - 2ab}}{{a + b}}}} \\
\Rightarrow \dfrac{{\dfrac{{a - b}}{2}}}{{\dfrac{{{a^2} - ab}}{{a + b}}}} \times \dfrac{{\dfrac{{b - a}}{2}}}{{\dfrac{{{b^2} - ab}}{{a + b}}}} \\
\Rightarrow \dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{2\left( {{a^2} - ab} \right)}} \times \dfrac{{\left( {b - a} \right)\left( {a + b} \right)}}{{2\left( {{b^2} - ab} \right)}} \\
\Rightarrow \dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{2a\left( {a - b} \right)}} \times \dfrac{{\left( {b - a} \right)\left( {a + b} \right)}}{{2b\left( {b - a} \right)}} \\
$
Now cancelling the common terms from the numerator and denominator
$ \Rightarrow \dfrac{{a + b}}{{2a}} \times \dfrac{{a + b}}{{2b}}$
Above equation can be manipulated as done below in order to obtain the R.H.S.
$
\Rightarrow \dfrac{{a + b}}{2} \times \dfrac{{a + b}}{{2ab}} \\
\Rightarrow \dfrac{{\left( {\dfrac{{a + b}}{2}} \right)}}{{\left( {\dfrac{{2ab}}{{a + b}}} \right)}} \\
$
As we know that
$
\because \dfrac{{a + b}}{2} = A{\text{ and }}\dfrac{{2ab}}{{a + b}} = H \\
\Rightarrow \dfrac{A}{H} \\
$
It becomes equal to the R.H.S.
Hence, the equation in the question is proved.
Note- Arithmetic mean and harmonic mean are one of the most important concepts and are used in almost all types of problems. Arithmetic mean represents a number that is obtained by dividing the sum of the elements of a set by the number of values in the set. The harmonic mean is defined as the reciprocal of the arithmetic mean of the given data values. It is based on all values present in the set.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

