Answer
Verified
395.4k+ views
Hint: Here in this question, we need to find the determinant of the matrix \[{{A}^{2}}-2A\]. Before solving this, we need to look at the definition of matrix. After that, we will consider the given data and given expression, firstly we are going to take the determinant to the \[{{A}^{2}}-2A\], then evaluate the answer.
Complete step by step answer:
Matrix is defined as the rectangular arrangement of numbers (real or complex) which may be represented as
\[\left( \begin{matrix}
{{a}_{11}} & \ldots & {{a}_{1n}} \\
\vdots & \ddots & \vdots \\
{{a}_{m1}} & \cdots & {{a}_{mn}} \\
\end{matrix} \right)\]
Matrix is enclosed by \[\left( {} \right)\] or \[\left[ {} \right]\].
Compact from the above matrix is represented by \[{{\left[ {{a}_{ij}} \right]}_{m\times n}}\]or \[A=\left[ {{a}_{ij}} \right]\].
Let us solve the given question,
Given data \[A=\left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]\],
Given expression, \[{{A}^{2}}-2A\]
To find determinant \[{{A}^{2}}-2A\]
Now,
\[\left| {{A}^{2}}-2A \right|=\left| A\left( A-2I \right) \right|\]
(Taking A common on Right-hand-side)
Writing the determinants separately, on the basis of \[\left( \left| AB \right|=\left| A \right|\left| B \right| \right)\], then we get
\[\Rightarrow \left| A \right|\left| A-2I \right|\]
We are going to substituting the matrix \[A=\left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]\] and identity matrix \[I=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\] is an identity matrix same as \[2\times 2\] on above expression \[{{A}^{2}}-2A\],
\[\Rightarrow \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
We will multiply the first two matrices first and then we will multiply the resultant to remaining matrix, then we get
\[\Rightarrow \left[ \left( 1\times 1-2\times 3 \right) \right]\times \left| \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \right|\]
Above matrix is obtained by \[2\times 2\]matrix multiplication,
\[\Rightarrow \left( 1-6 \right)\times \left| \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \right|\]
On solving,
\[\Rightarrow -5\times \left| \left[ \begin{matrix}
1-2 & 3-0 \\
2-0 & 1-2 \\
\end{matrix} \right] \right|\]
On further evaluation,
\[\Rightarrow -5\times \left| \left[ \begin{matrix}
-1 & 3 \\
2 & -1 \\
\end{matrix} \right] \right|\]
Finding the determinant of the above matrix,
\[\Rightarrow -5\times \left( \left( -1\times -1 \right)-2\times 3 \right)\]
Multiplying the above terms,
\[\Rightarrow -5\times \left( 1-6 \right)\]
\[\Rightarrow -5\times -5\]
Therefore, \[{{A}^{2}}-2A=25\].
Note: It is important to note that when we consider two matrices to be equal then in order to hold the equality every corresponding element in both the matrices should be equal. For matrix multiplication, the number of columns present in the first matrix should be equal to the number of rows present in the second matrix.
Complete step by step answer:
Matrix is defined as the rectangular arrangement of numbers (real or complex) which may be represented as
\[\left( \begin{matrix}
{{a}_{11}} & \ldots & {{a}_{1n}} \\
\vdots & \ddots & \vdots \\
{{a}_{m1}} & \cdots & {{a}_{mn}} \\
\end{matrix} \right)\]
Matrix is enclosed by \[\left( {} \right)\] or \[\left[ {} \right]\].
Compact from the above matrix is represented by \[{{\left[ {{a}_{ij}} \right]}_{m\times n}}\]or \[A=\left[ {{a}_{ij}} \right]\].
Let us solve the given question,
Given data \[A=\left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]\],
Given expression, \[{{A}^{2}}-2A\]
To find determinant \[{{A}^{2}}-2A\]
Now,
\[\left| {{A}^{2}}-2A \right|=\left| A\left( A-2I \right) \right|\]
(Taking A common on Right-hand-side)
Writing the determinants separately, on the basis of \[\left( \left| AB \right|=\left| A \right|\left| B \right| \right)\], then we get
\[\Rightarrow \left| A \right|\left| A-2I \right|\]
We are going to substituting the matrix \[A=\left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]\] and identity matrix \[I=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\] is an identity matrix same as \[2\times 2\] on above expression \[{{A}^{2}}-2A\],
\[\Rightarrow \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
We will multiply the first two matrices first and then we will multiply the resultant to remaining matrix, then we get
\[\Rightarrow \left[ \left( 1\times 1-2\times 3 \right) \right]\times \left| \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \right|\]
Above matrix is obtained by \[2\times 2\]matrix multiplication,
\[\Rightarrow \left( 1-6 \right)\times \left| \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \right|\]
On solving,
\[\Rightarrow -5\times \left| \left[ \begin{matrix}
1-2 & 3-0 \\
2-0 & 1-2 \\
\end{matrix} \right] \right|\]
On further evaluation,
\[\Rightarrow -5\times \left| \left[ \begin{matrix}
-1 & 3 \\
2 & -1 \\
\end{matrix} \right] \right|\]
Finding the determinant of the above matrix,
\[\Rightarrow -5\times \left( \left( -1\times -1 \right)-2\times 3 \right)\]
Multiplying the above terms,
\[\Rightarrow -5\times \left( 1-6 \right)\]
\[\Rightarrow -5\times -5\]
Therefore, \[{{A}^{2}}-2A=25\].
Note: It is important to note that when we consider two matrices to be equal then in order to hold the equality every corresponding element in both the matrices should be equal. For matrix multiplication, the number of columns present in the first matrix should be equal to the number of rows present in the second matrix.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers