Answer
Verified
499.8k+ views
Hint- We will be using an inscribed angle theorem to evaluate the base and height of the triangle which will help in finding the area of the triangle.
In the figure, $\vartriangle {\text{ABC}}$ is an isosceles triangle with ${\text{AB}} = {\text{AC}}$.
Also it is given that $\angle {\text{A}} = \angle {\text{BAC}} = 2\theta $ (shown in the figure as marked by red arc)
The centre of the circle is O and radius ${\text{OC}} = {\text{OA}} = a$
Now, let us draw an angle bisector AD from the vertex A of the isosceles triangle which divides $\angle {\text{A}} = \angle {\text{BAC}} = 2\theta $ into two equal angles i.e., $\angle {\text{BAD}} = \angle {\text{CAD}} = \dfrac{{2\theta }}{2} = \theta $.
According to the inscribed angle theorem, we can say that $\angle {\text{COD}}$ will be twice $\angle {\text{CAD}}$.
i.e., $\angle {\text{COD}} = 2\left( {\angle {\text{CAD}}} \right) = 2\theta $
In right angled triangle ODC,
$\cos \left( {2\theta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{OD}}}}{{{\text{OC}}}} = \dfrac{{{\text{OD}}}}{a} \Rightarrow {\text{OD}} = a\left[ {\cos \left( {2\theta } \right)} \right]$
Also, \[\sin \left( {2\theta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{DC}}}}{{{\text{OC}}}} = \dfrac{{{\text{DC}}}}{a} \Rightarrow {\text{DC}} = a\left[ {\sin \left( {2\theta } \right)} \right]\]
Now, ${\text{BC}} = 2\left( {{\text{DC}}} \right) = 2a\left[ {\sin \left( {2\theta } \right)} \right]$ and ${\text{AD}} = {\text{OD}} + {\text{OA}} = a\left[ {\cos \left( {2\theta } \right)} \right] + a = a\left[ {\cos \left( {2\theta } \right) + 1} \right]$
As we know that ${\text{Area of a triangle}} = \dfrac{1}{2} \times \left( {{\text{Base}}} \right) \times \left( {{\text{Height}}} \right)$
${\text{Area of }}\vartriangle {\text{ABC}}$, ${\text{A}} = \dfrac{1}{2} \times \left( {{\text{BC}}} \right) \times \left( {{\text{AD}}} \right) = \dfrac{1}{2} \times \left( {2a\left[ {\sin \left( {2\theta } \right)} \right]} \right) \times \left( {a\left[ {\cos \left( {2\theta } \right) + 1} \right]} \right) = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right]$
Also we know that $\sin \left( {2\alpha } \right) = 2\left( {\sin \alpha } \right)\left( {\cos \alpha } \right) \Rightarrow \left( {\sin \alpha } \right)\left( {\cos \alpha } \right) = \dfrac{{\sin \left( {2\alpha } \right)}}{2}$
\[ \Rightarrow {\text{A}} = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right] \Rightarrow {\text{A}} = {a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]\]
Now differentiating above equation with respect to $\theta $ both sides, we get
\[
\dfrac{{d{\text{A}}}}{{d\theta }} = \dfrac{{d\left\{ {{a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]} \right\}}}{{d\theta }} = {a^2}\dfrac{{d\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]}}{{d\theta }} = {a^2}\left[ {\dfrac{{4\cos \left( {4\theta } \right)}}{2} + 2\cos \left( {2\theta } \right)} \right] \\
\Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = {a^2}\left[ {2\cos \left( {4\theta } \right) + 2\cos \left( {2\theta } \right)} \right] \Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]{\text{ }} \to (1{\text{)}} \\
\]
Now, for area of the triangle to be maximum put \[\dfrac{{d{\text{A}}}}{{d\theta }} = 0\]
\[ \Rightarrow 0 = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right] \Rightarrow \cos \left( {4\theta } \right) + \cos \left( {2\theta } \right) = 0 \Rightarrow \theta = \dfrac{\pi }{2},\dfrac{\pi }{6}\]
Now, differentiating equation (1) again with respect to $\theta $, we have
\[
\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = \dfrac{{d\left\{ {2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]} \right\}}}{{d\theta }} = 2{a^2}\dfrac{{d\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]}}{{d\theta }} = 2{a^2}\left[ { - 4\sin \left( {4\theta } \right) - 2\sin \left( {2\theta } \right)} \right] \\
\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4\theta } \right) + \sin \left( {2\theta } \right)} \right] \\
\]
For \[\theta = \dfrac{\pi }{2}\], \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{2}} \right) + \sin \left( {2 \times \dfrac{\pi }{2}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {2\pi } \right) + \sin \left( \pi \right)} \right] = - 4{a^2}\left[ {2 \times 0 + 0} \right] = 0\]
For \[\theta = \dfrac{\pi }{6}\], \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{6}} \right) + \sin \left( {2 \times \dfrac{\pi }{6}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {\dfrac{{2\pi }}{3}} \right) + \sin \left( {\dfrac{\pi }{3}} \right)} \right] = - 4{a^2}\left[ {2 \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right] = - 6\sqrt 3 {a^2}\]
As, we know that area of the triangle will be maximum where \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} < 0\] i.e., will be negative .
So, at \[\theta = \dfrac{\pi }{6}\], the area of the given triangle is maximum.
Therefore, option A is correct.
Note- The inscribed angle theorem states that an angle $\theta $ inscribed in a circle is half of the central angle $2\theta $ that subtends the same arc on the circle. Also, here For \[\theta = \dfrac{\pi }{2}\], the double derivative of the area of the triangle comes out to be zero which means it is an inflection point.
In the figure, $\vartriangle {\text{ABC}}$ is an isosceles triangle with ${\text{AB}} = {\text{AC}}$.
Also it is given that $\angle {\text{A}} = \angle {\text{BAC}} = 2\theta $ (shown in the figure as marked by red arc)
The centre of the circle is O and radius ${\text{OC}} = {\text{OA}} = a$
Now, let us draw an angle bisector AD from the vertex A of the isosceles triangle which divides $\angle {\text{A}} = \angle {\text{BAC}} = 2\theta $ into two equal angles i.e., $\angle {\text{BAD}} = \angle {\text{CAD}} = \dfrac{{2\theta }}{2} = \theta $.
According to the inscribed angle theorem, we can say that $\angle {\text{COD}}$ will be twice $\angle {\text{CAD}}$.
i.e., $\angle {\text{COD}} = 2\left( {\angle {\text{CAD}}} \right) = 2\theta $
In right angled triangle ODC,
$\cos \left( {2\theta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{OD}}}}{{{\text{OC}}}} = \dfrac{{{\text{OD}}}}{a} \Rightarrow {\text{OD}} = a\left[ {\cos \left( {2\theta } \right)} \right]$
Also, \[\sin \left( {2\theta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{DC}}}}{{{\text{OC}}}} = \dfrac{{{\text{DC}}}}{a} \Rightarrow {\text{DC}} = a\left[ {\sin \left( {2\theta } \right)} \right]\]
Now, ${\text{BC}} = 2\left( {{\text{DC}}} \right) = 2a\left[ {\sin \left( {2\theta } \right)} \right]$ and ${\text{AD}} = {\text{OD}} + {\text{OA}} = a\left[ {\cos \left( {2\theta } \right)} \right] + a = a\left[ {\cos \left( {2\theta } \right) + 1} \right]$
As we know that ${\text{Area of a triangle}} = \dfrac{1}{2} \times \left( {{\text{Base}}} \right) \times \left( {{\text{Height}}} \right)$
${\text{Area of }}\vartriangle {\text{ABC}}$, ${\text{A}} = \dfrac{1}{2} \times \left( {{\text{BC}}} \right) \times \left( {{\text{AD}}} \right) = \dfrac{1}{2} \times \left( {2a\left[ {\sin \left( {2\theta } \right)} \right]} \right) \times \left( {a\left[ {\cos \left( {2\theta } \right) + 1} \right]} \right) = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right]$
Also we know that $\sin \left( {2\alpha } \right) = 2\left( {\sin \alpha } \right)\left( {\cos \alpha } \right) \Rightarrow \left( {\sin \alpha } \right)\left( {\cos \alpha } \right) = \dfrac{{\sin \left( {2\alpha } \right)}}{2}$
\[ \Rightarrow {\text{A}} = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right] \Rightarrow {\text{A}} = {a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]\]
Now differentiating above equation with respect to $\theta $ both sides, we get
\[
\dfrac{{d{\text{A}}}}{{d\theta }} = \dfrac{{d\left\{ {{a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]} \right\}}}{{d\theta }} = {a^2}\dfrac{{d\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]}}{{d\theta }} = {a^2}\left[ {\dfrac{{4\cos \left( {4\theta } \right)}}{2} + 2\cos \left( {2\theta } \right)} \right] \\
\Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = {a^2}\left[ {2\cos \left( {4\theta } \right) + 2\cos \left( {2\theta } \right)} \right] \Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]{\text{ }} \to (1{\text{)}} \\
\]
Now, for area of the triangle to be maximum put \[\dfrac{{d{\text{A}}}}{{d\theta }} = 0\]
\[ \Rightarrow 0 = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right] \Rightarrow \cos \left( {4\theta } \right) + \cos \left( {2\theta } \right) = 0 \Rightarrow \theta = \dfrac{\pi }{2},\dfrac{\pi }{6}\]
Now, differentiating equation (1) again with respect to $\theta $, we have
\[
\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = \dfrac{{d\left\{ {2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]} \right\}}}{{d\theta }} = 2{a^2}\dfrac{{d\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]}}{{d\theta }} = 2{a^2}\left[ { - 4\sin \left( {4\theta } \right) - 2\sin \left( {2\theta } \right)} \right] \\
\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4\theta } \right) + \sin \left( {2\theta } \right)} \right] \\
\]
For \[\theta = \dfrac{\pi }{2}\], \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{2}} \right) + \sin \left( {2 \times \dfrac{\pi }{2}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {2\pi } \right) + \sin \left( \pi \right)} \right] = - 4{a^2}\left[ {2 \times 0 + 0} \right] = 0\]
For \[\theta = \dfrac{\pi }{6}\], \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{6}} \right) + \sin \left( {2 \times \dfrac{\pi }{6}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {\dfrac{{2\pi }}{3}} \right) + \sin \left( {\dfrac{\pi }{3}} \right)} \right] = - 4{a^2}\left[ {2 \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right] = - 6\sqrt 3 {a^2}\]
As, we know that area of the triangle will be maximum where \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} < 0\] i.e., will be negative .
So, at \[\theta = \dfrac{\pi }{6}\], the area of the given triangle is maximum.
Therefore, option A is correct.
Note- The inscribed angle theorem states that an angle $\theta $ inscribed in a circle is half of the central angle $2\theta $ that subtends the same arc on the circle. Also, here For \[\theta = \dfrac{\pi }{2}\], the double derivative of the area of the triangle comes out to be zero which means it is an inflection point.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE