
If $\bar a,\bar b,\bar c$ are the three non-coplanar vectors, then $\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = $
A) $0$
B) $2$
C) $ - 2$
D) None of these
Answer
507.3k+ views
Hint: If three vectors are non-coplanar, then, the vector operations between them like $\bar a.\bar b \times \bar c$ can be written as $\left[ {\bar a\bar b\bar c} \right]$, this value is same as, $\bar c \times \bar a.\bar b = \bar a \times \bar b.\bar c = - \left( {\bar b.\bar a \times \bar c} \right)$ etc., or in other words, the terms which follow the cyclic order $\bar a,\bar b,\bar c$ have similar value, and if don’t follow the cyclic order, then tend to have a negative value of $\left[ {\bar a\bar b\bar c} \right]$. So, in this problem, we are to find those with similar values, and calculate the required value.
Complete step by step answer:
Given, $\bar a,\bar b,\bar c$ are three non-coplanar vectors.
We have to find, the value of $\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}}$
So, we know, that if three non-coplanar vectors are in the form of $\bar a.\bar b \times \bar c$ or any form following the cyclical order of $\bar a,\bar b,\bar c$ have same value and we write it as $\left[ {\bar a\bar b\bar c} \right]$.
So, the terms of the required vector equation are,
$\bar a.\bar b \times \bar c = \left[ {\bar a\bar b\bar c} \right]$
\[\bar c \times \bar a.\bar b = \left[ {\bar c\bar a\bar b} \right]\]
But, as it follows the same cyclical order, so, the value is equal to $\left[ {\bar a\bar b\bar c} \right]$.
That is, $\bar c \times \bar a.\bar b = \left[ {\bar c\bar a\bar b} \right] = \left[ {\bar a\bar b\bar c} \right]$
Similarly, $\bar c.\bar a \times \bar b = \left[ {\bar c\bar a\bar b} \right] = \left[ {\bar a\bar b\bar c} \right]$
And, $\bar b.\bar a \times \bar c = \left[ {\bar b\bar a\bar c} \right]$
Now, this term doesn’t follow the cyclical order, it’s value will be equal to $ - \left[ {\bar a\bar b\bar c} \right]$
That is, $\bar b.\bar a \times \bar c = \left[ {\bar b\bar a\bar c} \right] = - \left[ {\bar a\bar b\bar c} \right]$
So, substituting the values in the given vector equation, we get,
$\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar c\bar a\bar b} \right]}} + \dfrac{{\left[ {\bar b\bar a\bar c} \right]}}{{\left[ {\bar c\bar a\bar b} \right]}}$
Simplifying the expression with the help of known quantities, we get,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}} + \left( {\dfrac{{ - \left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}}} \right)$
Opening the brackets,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}} - \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}}$
Now, cancelling the like terms in numerator and denominator, we get,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = 1 - 1$
Carrying out the calculations, we get,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = 0$
Therefore, the value of the vector equation $\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}}$ is $0$.
Hence, the option (A) is the correct answer.
Note:
The vector operation \[\left[ {\bar a\bar b\bar c} \right]\] is also called a scalar triple product of three vectors. Scalar triple product of three vectors represents the volume of parallelepiped formed by the three vectors. In the case of three non-coplanar vectors, if between the three vectors, at least two of the vectors are similar, then, the value of the resultant vector on operation becomes $0$. That is if, the three vectors are like $\bar a \times \bar c.\bar a$, which we can write as $\left[ {\bar a\bar c\bar a} \right]$, then, the value of the resultant vector is $0$, i.e., $\left[ {\bar a\bar c\bar a} \right] = 0$.
Complete step by step answer:
Given, $\bar a,\bar b,\bar c$ are three non-coplanar vectors.
We have to find, the value of $\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}}$
So, we know, that if three non-coplanar vectors are in the form of $\bar a.\bar b \times \bar c$ or any form following the cyclical order of $\bar a,\bar b,\bar c$ have same value and we write it as $\left[ {\bar a\bar b\bar c} \right]$.
So, the terms of the required vector equation are,
$\bar a.\bar b \times \bar c = \left[ {\bar a\bar b\bar c} \right]$
\[\bar c \times \bar a.\bar b = \left[ {\bar c\bar a\bar b} \right]\]
But, as it follows the same cyclical order, so, the value is equal to $\left[ {\bar a\bar b\bar c} \right]$.
That is, $\bar c \times \bar a.\bar b = \left[ {\bar c\bar a\bar b} \right] = \left[ {\bar a\bar b\bar c} \right]$
Similarly, $\bar c.\bar a \times \bar b = \left[ {\bar c\bar a\bar b} \right] = \left[ {\bar a\bar b\bar c} \right]$
And, $\bar b.\bar a \times \bar c = \left[ {\bar b\bar a\bar c} \right]$
Now, this term doesn’t follow the cyclical order, it’s value will be equal to $ - \left[ {\bar a\bar b\bar c} \right]$
That is, $\bar b.\bar a \times \bar c = \left[ {\bar b\bar a\bar c} \right] = - \left[ {\bar a\bar b\bar c} \right]$
So, substituting the values in the given vector equation, we get,
$\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar c\bar a\bar b} \right]}} + \dfrac{{\left[ {\bar b\bar a\bar c} \right]}}{{\left[ {\bar c\bar a\bar b} \right]}}$
Simplifying the expression with the help of known quantities, we get,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}} + \left( {\dfrac{{ - \left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}}} \right)$
Opening the brackets,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}} - \dfrac{{\left[ {\bar a\bar b\bar c} \right]}}{{\left[ {\bar a\bar b\bar c} \right]}}$
Now, cancelling the like terms in numerator and denominator, we get,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = 1 - 1$
Carrying out the calculations, we get,
$ \Rightarrow \dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}} = 0$
Therefore, the value of the vector equation $\dfrac{{\bar a.\bar b \times \bar c}}{{\bar c \times \bar a.\bar b}} + \dfrac{{\bar b.\bar a \times \bar c}}{{\bar c.\bar a \times \bar b}}$ is $0$.
Hence, the option (A) is the correct answer.
Note:
The vector operation \[\left[ {\bar a\bar b\bar c} \right]\] is also called a scalar triple product of three vectors. Scalar triple product of three vectors represents the volume of parallelepiped formed by the three vectors. In the case of three non-coplanar vectors, if between the three vectors, at least two of the vectors are similar, then, the value of the resultant vector on operation becomes $0$. That is if, the three vectors are like $\bar a \times \bar c.\bar a$, which we can write as $\left[ {\bar a\bar c\bar a} \right]$, then, the value of the resultant vector is $0$, i.e., $\left[ {\bar a\bar c\bar a} \right] = 0$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

