Answer
Verified
495.6k+ views
Hint: The three vectors given to us are coplanar means the determinant consists of the coefficients of the vector is zero. Another condition is given to us that is the absolute value of the vector c is given. Using these two conditions we can find out the required values.
Complete step-by-step answer:
A vector is a line segment that has a length and definite direction.
The vectors which are parallel to the same plane, or lie on the same plane are called coplanar vectors.
If any three vectors are linearly dependent then they are coplanar.
It is given in the question that the three vectors $\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k},\overrightarrow{b}=4\hat{i}+3\hat{j}+4\hat{k},\overrightarrow{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are coplanar.
That means they are linearly dependent vectors.
Therefore the determinant of the coefficients of these three vectors will be equal to zero.
$\begin{align}
& \left| \begin{matrix}
1 & 1 & 1 \\
4 & 3 & 4 \\
1 & \alpha & \beta \\
\end{matrix} \right|=0 \\
& \Rightarrow 1\times \left( 3\beta -4\alpha \right)-1\times \left( 4\beta -4 \right)+1\times \left( 4\alpha -3 \right)=0 \\
& \Rightarrow 3\beta -4\alpha -4\beta +4+4\alpha -3=0 \\
& \Rightarrow -\beta +1=0 \\
& \Rightarrow \beta =1 \\
\end{align}$
So by using the first condition we got the value of $\beta $.
Now we have to find out the value of $\alpha $.
We have another condition that is given in the question.
Which is the absolute value of the third vector is given to us.
The absolute value or the modulus value is the measure of the magnitude of a vector. Geometrically, the absolute value represents the displacement from the origin and it is always nonnegative.
We have,
$\left| c \right|=\sqrt{3}$
By squaring both the sides we have,
$\begin{align}
& \Rightarrow {{\left| c \right|}^{2}}={{\left( \sqrt{3} \right)}^{2}} \\
& \Rightarrow {{\left( \sqrt{{{1}^{2}}+{{\alpha }^{2}}+{{\beta }^{2}}} \right)}^{2}}=3 \\
& \Rightarrow 1+{{\alpha }^{2}}+{{\beta }^{2}}=3 \\
& \Rightarrow {{\alpha }^{2}}+{{\beta }^{2}}=3-1=2 \\
\end{align}$
Substitute the value of $\beta $,
$\begin{align}
& \Rightarrow {{\alpha }^{2}}+{{\left( 1 \right)}^{2}}=2 \\
& \Rightarrow {{\alpha }^{2}}=2-1=1 \\
& \Rightarrow \alpha =\pm 1 \\
\end{align}$
Therefore the values are $\alpha =\pm 1,\beta =1$.
Hence, option (c) is correct.
Note: Alternatively we can use the fact that three vectors are said to be coplanar if their scalar triple product is zero.
Therefore, $\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=0$
We can get the value of $\beta $ from the above condition.
Complete step-by-step answer:
A vector is a line segment that has a length and definite direction.
The vectors which are parallel to the same plane, or lie on the same plane are called coplanar vectors.
If any three vectors are linearly dependent then they are coplanar.
It is given in the question that the three vectors $\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k},\overrightarrow{b}=4\hat{i}+3\hat{j}+4\hat{k},\overrightarrow{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are coplanar.
That means they are linearly dependent vectors.
Therefore the determinant of the coefficients of these three vectors will be equal to zero.
$\begin{align}
& \left| \begin{matrix}
1 & 1 & 1 \\
4 & 3 & 4 \\
1 & \alpha & \beta \\
\end{matrix} \right|=0 \\
& \Rightarrow 1\times \left( 3\beta -4\alpha \right)-1\times \left( 4\beta -4 \right)+1\times \left( 4\alpha -3 \right)=0 \\
& \Rightarrow 3\beta -4\alpha -4\beta +4+4\alpha -3=0 \\
& \Rightarrow -\beta +1=0 \\
& \Rightarrow \beta =1 \\
\end{align}$
So by using the first condition we got the value of $\beta $.
Now we have to find out the value of $\alpha $.
We have another condition that is given in the question.
Which is the absolute value of the third vector is given to us.
The absolute value or the modulus value is the measure of the magnitude of a vector. Geometrically, the absolute value represents the displacement from the origin and it is always nonnegative.
We have,
$\left| c \right|=\sqrt{3}$
By squaring both the sides we have,
$\begin{align}
& \Rightarrow {{\left| c \right|}^{2}}={{\left( \sqrt{3} \right)}^{2}} \\
& \Rightarrow {{\left( \sqrt{{{1}^{2}}+{{\alpha }^{2}}+{{\beta }^{2}}} \right)}^{2}}=3 \\
& \Rightarrow 1+{{\alpha }^{2}}+{{\beta }^{2}}=3 \\
& \Rightarrow {{\alpha }^{2}}+{{\beta }^{2}}=3-1=2 \\
\end{align}$
Substitute the value of $\beta $,
$\begin{align}
& \Rightarrow {{\alpha }^{2}}+{{\left( 1 \right)}^{2}}=2 \\
& \Rightarrow {{\alpha }^{2}}=2-1=1 \\
& \Rightarrow \alpha =\pm 1 \\
\end{align}$
Therefore the values are $\alpha =\pm 1,\beta =1$.
Hence, option (c) is correct.
Note: Alternatively we can use the fact that three vectors are said to be coplanar if their scalar triple product is zero.
Therefore, $\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=0$
We can get the value of $\beta $ from the above condition.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers