If $\cos \dfrac{{12}}{{13}}$, $\sin < 0$, how do you find tan in simplest form?
Answer
Verified
443.7k+ views
Hint: Sin is comparable to the side inverse a given point in a correct triangle to the hypotenuse. Cos is identical to the proportion of the side nearby an intense point in a right-calculated triangle to the hypotenuse.
Complete step by step answer:
Use the definition of cosine to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
$\cos (x) = \dfrac{{adjacent}}{{hypotenuse}}$
Let's find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.
$opposite = \sqrt {hypotenuse{e^2} - adjacent{t^2}} $
Replace the known value of the in the equation.
$opposite = \sqrt {{{13}^2} - {{12}^2}} $
Simplify $\sqrt {{{13}^2} - {{12}^2}} $
Raise 13 to the power of 2.
$Opposite = \sqrt {169 - {{(12)}^2}} $
Raise 12 to the power of 2.
$Opposite = \sqrt {169 - 1.144} $
Multiply $ - 1$ by 144
$Opposite = \sqrt {169 - 144} $
Subtract 144 from 169.
$Opposite = \sqrt {25} $
Rewrite 25 as ${5^2}$.
$Opposite = \sqrt {{5^2}} $
Pull terms out from under the radical, assuming positive real numbers.
$Opposite = 5$
Use the definition of $\sin $to find the value of $\sin (x)$.
$\sin (x) = \dfrac{{opp}}{{hyp}}$
Substitute in the known values.
$\sin (a) = \dfrac{5}{{13}}$.
$cos(a) = \dfrac{{12}}{{13}}$. Angle is in either 1st quadrant or in the 4th.
$\sin (a) = \pm \dfrac{5}{{13}}$. As, $\sin (a) < 0$, a is in the 4th quadrant. So, $\sin (a) = - \dfrac{5}{{13}}$.
Use the definition of tangent to find the value of $\tan (x)$
$\tan (x) = \dfrac{{opp}}{{adj}}$
Substitute in the known values.
$\tan (a) = - \dfrac{5}{{12}}$.
Thus, the ratio of $\dfrac{{\sin (a)}}{{\cos (a)}} = \tan (a) = - \dfrac{5}{{12}}$.
Note: We note that the domain of sin inverse function is $( - 1,1)$ and since $\dfrac{{12}}{{13}} \in ( - 1,1)$ the value $\sin = - \dfrac{5}{{13}}$ is well defined.
Complete step by step answer:
Use the definition of cosine to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
$\cos (x) = \dfrac{{adjacent}}{{hypotenuse}}$
Let's find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.
$opposite = \sqrt {hypotenuse{e^2} - adjacent{t^2}} $
Replace the known value of the in the equation.
$opposite = \sqrt {{{13}^2} - {{12}^2}} $
Simplify $\sqrt {{{13}^2} - {{12}^2}} $
Raise 13 to the power of 2.
$Opposite = \sqrt {169 - {{(12)}^2}} $
Raise 12 to the power of 2.
$Opposite = \sqrt {169 - 1.144} $
Multiply $ - 1$ by 144
$Opposite = \sqrt {169 - 144} $
Subtract 144 from 169.
$Opposite = \sqrt {25} $
Rewrite 25 as ${5^2}$.
$Opposite = \sqrt {{5^2}} $
Pull terms out from under the radical, assuming positive real numbers.
$Opposite = 5$
Use the definition of $\sin $to find the value of $\sin (x)$.
$\sin (x) = \dfrac{{opp}}{{hyp}}$
Substitute in the known values.
$\sin (a) = \dfrac{5}{{13}}$.
$cos(a) = \dfrac{{12}}{{13}}$. Angle is in either 1st quadrant or in the 4th.
$\sin (a) = \pm \dfrac{5}{{13}}$. As, $\sin (a) < 0$, a is in the 4th quadrant. So, $\sin (a) = - \dfrac{5}{{13}}$.
Use the definition of tangent to find the value of $\tan (x)$
$\tan (x) = \dfrac{{opp}}{{adj}}$
Substitute in the known values.
$\tan (a) = - \dfrac{5}{{12}}$.
Thus, the ratio of $\dfrac{{\sin (a)}}{{\cos (a)}} = \tan (a) = - \dfrac{5}{{12}}$.
Note: We note that the domain of sin inverse function is $( - 1,1)$ and since $\dfrac{{12}}{{13}} \in ( - 1,1)$ the value $\sin = - \dfrac{5}{{13}}$ is well defined.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE
Can anyone list 10 advantages and disadvantages of friction
Distinguish between Mitosis and Meiosis class 11 biology CBSE