Answer
Verified
397.2k+ views
Hint:To find the value of ${D_1} + {D_2} + {D_3} + {D_4} + {D_5}$, we first need to solve determinant ${D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$ and find its value. After finding its value in terms of P, we need to substitute $P = 1,2,3,4,5$ and add all those values to get our answer.
Complete step by step answer:
In this question, we are given a determinant with variable P and we need to find out the value of ${D_1} + {D_2} + {D_3} + {D_4} + {D_5}$.
Given determinant: ${D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$
Now, first of all we will find the value of the given determinant and then substitute the value of P with 1, 2, 3, 4 and 5 one by one and add those values.
Therefore, we get
${D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right| = P\left| {\begin{array}{*{20}{c}}
{35}&9 \\
{25}&{10}
\end{array}} \right| - 15\left| {\begin{array}{*{20}{c}}
{{P^2}}&9 \\
{{P^3}}&{10}
\end{array}} \right| + 8\left| {\begin{array}{*{20}{c}}
{{P^2}}&{35} \\
{{P^3}}&{25}
\end{array}} \right|$
${D_P} = P\left( {35 \times 10 - 25 \times 9} \right) - 15\left( {{P^2} \times 10 - {P^3} \times 9} \right) + 8\left( {{P^2} \times 25 - {P^3} \times 35} \right) \\
\Rightarrow {D_P} = P\left( {350 - 225} \right) - 15\left( {10{P^2} - 9{P^3}} \right) + 8\left( {25{P^2} - 35{P^3}} \right) \\
\Rightarrow {D_P} = 125P - 150{P^2} + 135{P^3} + 200{P^2} - 280{P^3} \\
\Rightarrow {D_P} = 125P + 50{P^2} - 145{P^3} \\ $
Hence, we have found the value of the given determinant and now we need to substitute $P = 1,2,3,4,5$ and add those results.
Therefore, For $P = 1$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_1} = 125\left( 1 \right) + 50{\left( 1 \right)^2} - 145{\left( 1 \right)^3} \\
\Rightarrow {D_1} = 125 + 50 - 145 \\
\Rightarrow {D_1} = 30 \\ $
For $P = 2$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_2} = 125\left( 2 \right) + 50{\left( 2 \right)^2} - 145{\left( 2 \right)^3} \\
\Rightarrow {D_2} = 250 + 200 - 1160 \\
\Rightarrow {D_2} = - 710 \\ $
For $P = 3$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_3} = 125\left( 3 \right) + 50{\left( 3 \right)^2} - 145{\left( 3 \right)^3} \\
\Rightarrow {D_3} = 375 + 450 - 3915 \\
\Rightarrow {D_3} = - 3090 \\ $
For $P = 4$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_4} = 125\left( 4 \right) + 50{\left( 4 \right)^2} - 145{\left( 4 \right)^3} \\
\Rightarrow {D_4} = 500 + 800 - 9280 \\
\Rightarrow {D_4} = - 7980 \\ $
For $P = 5$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_5} = 125\left( 5 \right) + 50{\left( 5 \right)^2} - 145{\left( 5 \right)^3} \\
\Rightarrow {D_5} = 625 + 1250 - 18125 \\
\Rightarrow {D_5} = - 16250 \\ $
Therefore, we have all the values we need and now we need to just add them. Therefore, we get
${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = 30 - 710 - 3090 - 7980 - 16250 \\
\therefore {D_1} + {D_2} + {D_3} + {D_4} + {D_5} = - 28000 \\ $
Hence, the correct answer is option D.
Note: We can also solve this question using the following method.
$\Rightarrow {D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$
Substitute $P = 1,2,3,4,5$. Therefore, we get
For $P = 1$:
$\Rightarrow {D_1} = \left| {\begin{array}{*{20}{c}}
1&{15}&8 \\
{{1^2}}&{35}&9 \\
{{1^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_1} = 1\left( {350 - 225} \right) - 15\left( {10 - 9} \right) + 8\left( {25 - 35} \right) \\
\Rightarrow {D_1} = 125 - 15 - 80 \\
\Rightarrow {D_1} = 30 \\ $
For $P = 2$:
$\Rightarrow {D_2} = \left| {\begin{array}{*{20}{c}}
2&{15}&8 \\
{{2^2}}&{35}&9 \\
{{2^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_2} = 2\left( {350 - 225} \right) - 15\left( {40 - 72} \right) + 8\left( {100 - 280} \right) \\
\Rightarrow {D_2} = 250 + 480 - 1440 \\
\Rightarrow {D_2} = - 710 \\ $
For $P = 3$:
$\Rightarrow {D_3} = \left| {\begin{array}{*{20}{c}}
3&{15}&8 \\
{{3^2}}&{35}&9 \\
{{3^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_3} = 3\left( {350 - 225} \right) - 15\left( {90 - 243} \right) + 8\left( {225 - 945} \right) \\
\Rightarrow {D_3} = 375 + 2295 - 5760 \\
\Rightarrow {D_3} = - 3090 \\ $
For $P = 4$:
$\Rightarrow {D_4} = \left| {\begin{array}{*{20}{c}}
4&{15}&8 \\
{{4^2}}&{35}&9 \\
{{4^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_4} = 4\left( {350 - 225} \right) - 15\left( {160 - 576} \right) + 8\left( {400 - 2240} \right) \\
\Rightarrow {D_4} = 500 + 6240 - 14720 \\
\Rightarrow {D_4} = - 7980 \\ $
For $P = 5$:
$\Rightarrow {D_5} = \left| {\begin{array}{*{20}{c}}
5&{15}&8 \\
{{5^2}}&{35}&9 \\
{{5^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_5} = 5\left( {350 - 225} \right) - 15\left( {250 - 1125} \right) + 8\left( {625 - 4375} \right) \\
\Rightarrow {D_5} = 625 + 13125 - 30000 \\
\Rightarrow {D_5} = - 16250 \\ $
Therefore,
$\Rightarrow {D_1} + {D_2} + {D_3} + {D_4} + {D_5} = 30 - 710 - 3090 - 7980 - 16250 \\
\therefore {D_1} + {D_2} + {D_3} + {D_4} + {D_5} = - 28000 \\ $
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$ and find its value. After finding its value in terms of P, we need to substitute $P = 1,2,3,4,5$ and add all those values to get our answer.
Complete step by step answer:
In this question, we are given a determinant with variable P and we need to find out the value of ${D_1} + {D_2} + {D_3} + {D_4} + {D_5}$.
Given determinant: ${D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$
Now, first of all we will find the value of the given determinant and then substitute the value of P with 1, 2, 3, 4 and 5 one by one and add those values.
Therefore, we get
${D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right| = P\left| {\begin{array}{*{20}{c}}
{35}&9 \\
{25}&{10}
\end{array}} \right| - 15\left| {\begin{array}{*{20}{c}}
{{P^2}}&9 \\
{{P^3}}&{10}
\end{array}} \right| + 8\left| {\begin{array}{*{20}{c}}
{{P^2}}&{35} \\
{{P^3}}&{25}
\end{array}} \right|$
${D_P} = P\left( {35 \times 10 - 25 \times 9} \right) - 15\left( {{P^2} \times 10 - {P^3} \times 9} \right) + 8\left( {{P^2} \times 25 - {P^3} \times 35} \right) \\
\Rightarrow {D_P} = P\left( {350 - 225} \right) - 15\left( {10{P^2} - 9{P^3}} \right) + 8\left( {25{P^2} - 35{P^3}} \right) \\
\Rightarrow {D_P} = 125P - 150{P^2} + 135{P^3} + 200{P^2} - 280{P^3} \\
\Rightarrow {D_P} = 125P + 50{P^2} - 145{P^3} \\ $
Hence, we have found the value of the given determinant and now we need to substitute $P = 1,2,3,4,5$ and add those results.
Therefore, For $P = 1$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_1} = 125\left( 1 \right) + 50{\left( 1 \right)^2} - 145{\left( 1 \right)^3} \\
\Rightarrow {D_1} = 125 + 50 - 145 \\
\Rightarrow {D_1} = 30 \\ $
For $P = 2$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_2} = 125\left( 2 \right) + 50{\left( 2 \right)^2} - 145{\left( 2 \right)^3} \\
\Rightarrow {D_2} = 250 + 200 - 1160 \\
\Rightarrow {D_2} = - 710 \\ $
For $P = 3$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_3} = 125\left( 3 \right) + 50{\left( 3 \right)^2} - 145{\left( 3 \right)^3} \\
\Rightarrow {D_3} = 375 + 450 - 3915 \\
\Rightarrow {D_3} = - 3090 \\ $
For $P = 4$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_4} = 125\left( 4 \right) + 50{\left( 4 \right)^2} - 145{\left( 4 \right)^3} \\
\Rightarrow {D_4} = 500 + 800 - 9280 \\
\Rightarrow {D_4} = - 7980 \\ $
For $P = 5$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_5} = 125\left( 5 \right) + 50{\left( 5 \right)^2} - 145{\left( 5 \right)^3} \\
\Rightarrow {D_5} = 625 + 1250 - 18125 \\
\Rightarrow {D_5} = - 16250 \\ $
Therefore, we have all the values we need and now we need to just add them. Therefore, we get
${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = 30 - 710 - 3090 - 7980 - 16250 \\
\therefore {D_1} + {D_2} + {D_3} + {D_4} + {D_5} = - 28000 \\ $
Hence, the correct answer is option D.
Note: We can also solve this question using the following method.
$\Rightarrow {D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$
Substitute $P = 1,2,3,4,5$. Therefore, we get
For $P = 1$:
$\Rightarrow {D_1} = \left| {\begin{array}{*{20}{c}}
1&{15}&8 \\
{{1^2}}&{35}&9 \\
{{1^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_1} = 1\left( {350 - 225} \right) - 15\left( {10 - 9} \right) + 8\left( {25 - 35} \right) \\
\Rightarrow {D_1} = 125 - 15 - 80 \\
\Rightarrow {D_1} = 30 \\ $
For $P = 2$:
$\Rightarrow {D_2} = \left| {\begin{array}{*{20}{c}}
2&{15}&8 \\
{{2^2}}&{35}&9 \\
{{2^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_2} = 2\left( {350 - 225} \right) - 15\left( {40 - 72} \right) + 8\left( {100 - 280} \right) \\
\Rightarrow {D_2} = 250 + 480 - 1440 \\
\Rightarrow {D_2} = - 710 \\ $
For $P = 3$:
$\Rightarrow {D_3} = \left| {\begin{array}{*{20}{c}}
3&{15}&8 \\
{{3^2}}&{35}&9 \\
{{3^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_3} = 3\left( {350 - 225} \right) - 15\left( {90 - 243} \right) + 8\left( {225 - 945} \right) \\
\Rightarrow {D_3} = 375 + 2295 - 5760 \\
\Rightarrow {D_3} = - 3090 \\ $
For $P = 4$:
$\Rightarrow {D_4} = \left| {\begin{array}{*{20}{c}}
4&{15}&8 \\
{{4^2}}&{35}&9 \\
{{4^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_4} = 4\left( {350 - 225} \right) - 15\left( {160 - 576} \right) + 8\left( {400 - 2240} \right) \\
\Rightarrow {D_4} = 500 + 6240 - 14720 \\
\Rightarrow {D_4} = - 7980 \\ $
For $P = 5$:
$\Rightarrow {D_5} = \left| {\begin{array}{*{20}{c}}
5&{15}&8 \\
{{5^2}}&{35}&9 \\
{{5^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_5} = 5\left( {350 - 225} \right) - 15\left( {250 - 1125} \right) + 8\left( {625 - 4375} \right) \\
\Rightarrow {D_5} = 625 + 13125 - 30000 \\
\Rightarrow {D_5} = - 16250 \\ $
Therefore,
$\Rightarrow {D_1} + {D_2} + {D_3} + {D_4} + {D_5} = 30 - 710 - 3090 - 7980 - 16250 \\
\therefore {D_1} + {D_2} + {D_3} + {D_4} + {D_5} = - 28000 \\ $
Recently Updated Pages
Two forms of Dglucopyranose are called class 12 chemistry JEE_Main
A conducting circular loop of radius r carries a constant class 12 physics JEE_Main
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
When a glass slab is placed on a cross made on a sheet class 12 physics JEE_Main
In an insulator the forbidden energy gap between the class 12 physics JEE_Main
A spherical surface of radius of curvature R separates class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE