
If ${D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$, then ${D_1} + {D_2} + {D_3} + {D_4} + {D_5}$ is equal to
A. -29000
B. -25000
C. 25000
D. None of these
Answer
517.2k+ views
Hint:To find the value of ${D_1} + {D_2} + {D_3} + {D_4} + {D_5}$, we first need to solve determinant ${D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$ and find its value. After finding its value in terms of P, we need to substitute $P = 1,2,3,4,5$ and add all those values to get our answer.
Complete step by step answer:
In this question, we are given a determinant with variable P and we need to find out the value of ${D_1} + {D_2} + {D_3} + {D_4} + {D_5}$.
Given determinant: ${D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$
Now, first of all we will find the value of the given determinant and then substitute the value of P with 1, 2, 3, 4 and 5 one by one and add those values.
Therefore, we get
${D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right| = P\left| {\begin{array}{*{20}{c}}
{35}&9 \\
{25}&{10}
\end{array}} \right| - 15\left| {\begin{array}{*{20}{c}}
{{P^2}}&9 \\
{{P^3}}&{10}
\end{array}} \right| + 8\left| {\begin{array}{*{20}{c}}
{{P^2}}&{35} \\
{{P^3}}&{25}
\end{array}} \right|$
${D_P} = P\left( {35 \times 10 - 25 \times 9} \right) - 15\left( {{P^2} \times 10 - {P^3} \times 9} \right) + 8\left( {{P^2} \times 25 - {P^3} \times 35} \right) \\
\Rightarrow {D_P} = P\left( {350 - 225} \right) - 15\left( {10{P^2} - 9{P^3}} \right) + 8\left( {25{P^2} - 35{P^3}} \right) \\
\Rightarrow {D_P} = 125P - 150{P^2} + 135{P^3} + 200{P^2} - 280{P^3} \\
\Rightarrow {D_P} = 125P + 50{P^2} - 145{P^3} \\ $
Hence, we have found the value of the given determinant and now we need to substitute $P = 1,2,3,4,5$ and add those results.
Therefore, For $P = 1$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_1} = 125\left( 1 \right) + 50{\left( 1 \right)^2} - 145{\left( 1 \right)^3} \\
\Rightarrow {D_1} = 125 + 50 - 145 \\
\Rightarrow {D_1} = 30 \\ $
For $P = 2$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_2} = 125\left( 2 \right) + 50{\left( 2 \right)^2} - 145{\left( 2 \right)^3} \\
\Rightarrow {D_2} = 250 + 200 - 1160 \\
\Rightarrow {D_2} = - 710 \\ $
For $P = 3$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_3} = 125\left( 3 \right) + 50{\left( 3 \right)^2} - 145{\left( 3 \right)^3} \\
\Rightarrow {D_3} = 375 + 450 - 3915 \\
\Rightarrow {D_3} = - 3090 \\ $
For $P = 4$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_4} = 125\left( 4 \right) + 50{\left( 4 \right)^2} - 145{\left( 4 \right)^3} \\
\Rightarrow {D_4} = 500 + 800 - 9280 \\
\Rightarrow {D_4} = - 7980 \\ $
For $P = 5$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_5} = 125\left( 5 \right) + 50{\left( 5 \right)^2} - 145{\left( 5 \right)^3} \\
\Rightarrow {D_5} = 625 + 1250 - 18125 \\
\Rightarrow {D_5} = - 16250 \\ $
Therefore, we have all the values we need and now we need to just add them. Therefore, we get
${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = 30 - 710 - 3090 - 7980 - 16250 \\
\therefore {D_1} + {D_2} + {D_3} + {D_4} + {D_5} = - 28000 \\ $
Hence, the correct answer is option D.
Note: We can also solve this question using the following method.
$\Rightarrow {D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$
Substitute $P = 1,2,3,4,5$. Therefore, we get
For $P = 1$:
$\Rightarrow {D_1} = \left| {\begin{array}{*{20}{c}}
1&{15}&8 \\
{{1^2}}&{35}&9 \\
{{1^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_1} = 1\left( {350 - 225} \right) - 15\left( {10 - 9} \right) + 8\left( {25 - 35} \right) \\
\Rightarrow {D_1} = 125 - 15 - 80 \\
\Rightarrow {D_1} = 30 \\ $
For $P = 2$:
$\Rightarrow {D_2} = \left| {\begin{array}{*{20}{c}}
2&{15}&8 \\
{{2^2}}&{35}&9 \\
{{2^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_2} = 2\left( {350 - 225} \right) - 15\left( {40 - 72} \right) + 8\left( {100 - 280} \right) \\
\Rightarrow {D_2} = 250 + 480 - 1440 \\
\Rightarrow {D_2} = - 710 \\ $
For $P = 3$:
$\Rightarrow {D_3} = \left| {\begin{array}{*{20}{c}}
3&{15}&8 \\
{{3^2}}&{35}&9 \\
{{3^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_3} = 3\left( {350 - 225} \right) - 15\left( {90 - 243} \right) + 8\left( {225 - 945} \right) \\
\Rightarrow {D_3} = 375 + 2295 - 5760 \\
\Rightarrow {D_3} = - 3090 \\ $
For $P = 4$:
$\Rightarrow {D_4} = \left| {\begin{array}{*{20}{c}}
4&{15}&8 \\
{{4^2}}&{35}&9 \\
{{4^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_4} = 4\left( {350 - 225} \right) - 15\left( {160 - 576} \right) + 8\left( {400 - 2240} \right) \\
\Rightarrow {D_4} = 500 + 6240 - 14720 \\
\Rightarrow {D_4} = - 7980 \\ $
For $P = 5$:
$\Rightarrow {D_5} = \left| {\begin{array}{*{20}{c}}
5&{15}&8 \\
{{5^2}}&{35}&9 \\
{{5^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_5} = 5\left( {350 - 225} \right) - 15\left( {250 - 1125} \right) + 8\left( {625 - 4375} \right) \\
\Rightarrow {D_5} = 625 + 13125 - 30000 \\
\Rightarrow {D_5} = - 16250 \\ $
Therefore,
$\Rightarrow {D_1} + {D_2} + {D_3} + {D_4} + {D_5} = 30 - 710 - 3090 - 7980 - 16250 \\
\therefore {D_1} + {D_2} + {D_3} + {D_4} + {D_5} = - 28000 \\ $
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$ and find its value. After finding its value in terms of P, we need to substitute $P = 1,2,3,4,5$ and add all those values to get our answer.
Complete step by step answer:
In this question, we are given a determinant with variable P and we need to find out the value of ${D_1} + {D_2} + {D_3} + {D_4} + {D_5}$.
Given determinant: ${D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$
Now, first of all we will find the value of the given determinant and then substitute the value of P with 1, 2, 3, 4 and 5 one by one and add those values.
Therefore, we get
${D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right| = P\left| {\begin{array}{*{20}{c}}
{35}&9 \\
{25}&{10}
\end{array}} \right| - 15\left| {\begin{array}{*{20}{c}}
{{P^2}}&9 \\
{{P^3}}&{10}
\end{array}} \right| + 8\left| {\begin{array}{*{20}{c}}
{{P^2}}&{35} \\
{{P^3}}&{25}
\end{array}} \right|$
${D_P} = P\left( {35 \times 10 - 25 \times 9} \right) - 15\left( {{P^2} \times 10 - {P^3} \times 9} \right) + 8\left( {{P^2} \times 25 - {P^3} \times 35} \right) \\
\Rightarrow {D_P} = P\left( {350 - 225} \right) - 15\left( {10{P^2} - 9{P^3}} \right) + 8\left( {25{P^2} - 35{P^3}} \right) \\
\Rightarrow {D_P} = 125P - 150{P^2} + 135{P^3} + 200{P^2} - 280{P^3} \\
\Rightarrow {D_P} = 125P + 50{P^2} - 145{P^3} \\ $
Hence, we have found the value of the given determinant and now we need to substitute $P = 1,2,3,4,5$ and add those results.
Therefore, For $P = 1$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_1} = 125\left( 1 \right) + 50{\left( 1 \right)^2} - 145{\left( 1 \right)^3} \\
\Rightarrow {D_1} = 125 + 50 - 145 \\
\Rightarrow {D_1} = 30 \\ $
For $P = 2$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_2} = 125\left( 2 \right) + 50{\left( 2 \right)^2} - 145{\left( 2 \right)^3} \\
\Rightarrow {D_2} = 250 + 200 - 1160 \\
\Rightarrow {D_2} = - 710 \\ $
For $P = 3$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_3} = 125\left( 3 \right) + 50{\left( 3 \right)^2} - 145{\left( 3 \right)^3} \\
\Rightarrow {D_3} = 375 + 450 - 3915 \\
\Rightarrow {D_3} = - 3090 \\ $
For $P = 4$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_4} = 125\left( 4 \right) + 50{\left( 4 \right)^2} - 145{\left( 4 \right)^3} \\
\Rightarrow {D_4} = 500 + 800 - 9280 \\
\Rightarrow {D_4} = - 7980 \\ $
For $P = 5$:
${D_P} = 125P + 50{P^2} - 145{P^3} \\
\Rightarrow {D_5} = 125\left( 5 \right) + 50{\left( 5 \right)^2} - 145{\left( 5 \right)^3} \\
\Rightarrow {D_5} = 625 + 1250 - 18125 \\
\Rightarrow {D_5} = - 16250 \\ $
Therefore, we have all the values we need and now we need to just add them. Therefore, we get
${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = 30 - 710 - 3090 - 7980 - 16250 \\
\therefore {D_1} + {D_2} + {D_3} + {D_4} + {D_5} = - 28000 \\ $
Hence, the correct answer is option D.
Note: We can also solve this question using the following method.
$\Rightarrow {D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\
{{P^2}}&{35}&9 \\
{{P^3}}&{25}&{10}
\end{array}} \right|$
Substitute $P = 1,2,3,4,5$. Therefore, we get
For $P = 1$:
$\Rightarrow {D_1} = \left| {\begin{array}{*{20}{c}}
1&{15}&8 \\
{{1^2}}&{35}&9 \\
{{1^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_1} = 1\left( {350 - 225} \right) - 15\left( {10 - 9} \right) + 8\left( {25 - 35} \right) \\
\Rightarrow {D_1} = 125 - 15 - 80 \\
\Rightarrow {D_1} = 30 \\ $
For $P = 2$:
$\Rightarrow {D_2} = \left| {\begin{array}{*{20}{c}}
2&{15}&8 \\
{{2^2}}&{35}&9 \\
{{2^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_2} = 2\left( {350 - 225} \right) - 15\left( {40 - 72} \right) + 8\left( {100 - 280} \right) \\
\Rightarrow {D_2} = 250 + 480 - 1440 \\
\Rightarrow {D_2} = - 710 \\ $
For $P = 3$:
$\Rightarrow {D_3} = \left| {\begin{array}{*{20}{c}}
3&{15}&8 \\
{{3^2}}&{35}&9 \\
{{3^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_3} = 3\left( {350 - 225} \right) - 15\left( {90 - 243} \right) + 8\left( {225 - 945} \right) \\
\Rightarrow {D_3} = 375 + 2295 - 5760 \\
\Rightarrow {D_3} = - 3090 \\ $
For $P = 4$:
$\Rightarrow {D_4} = \left| {\begin{array}{*{20}{c}}
4&{15}&8 \\
{{4^2}}&{35}&9 \\
{{4^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_4} = 4\left( {350 - 225} \right) - 15\left( {160 - 576} \right) + 8\left( {400 - 2240} \right) \\
\Rightarrow {D_4} = 500 + 6240 - 14720 \\
\Rightarrow {D_4} = - 7980 \\ $
For $P = 5$:
$\Rightarrow {D_5} = \left| {\begin{array}{*{20}{c}}
5&{15}&8 \\
{{5^2}}&{35}&9 \\
{{5^3}}&{25}&{10}
\end{array}} \right| \\
\Rightarrow {D_5} = 5\left( {350 - 225} \right) - 15\left( {250 - 1125} \right) + 8\left( {625 - 4375} \right) \\
\Rightarrow {D_5} = 625 + 13125 - 30000 \\
\Rightarrow {D_5} = - 16250 \\ $
Therefore,
$\Rightarrow {D_1} + {D_2} + {D_3} + {D_4} + {D_5} = 30 - 710 - 3090 - 7980 - 16250 \\
\therefore {D_1} + {D_2} + {D_3} + {D_4} + {D_5} = - 28000 \\ $
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

