Answer
Verified
460.5k+ views
Hint: In this question, we have to find out the region in the specific range.
We know that Modulus is the function which gives the absolute value of a real or complex number. It will always return the positive value.
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by \[\left[ x \right]\] .
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that \[f:\mathbb{R} \to \mathbb{R}\] and \[g:\mathbb{R} \to \mathbb{R}\] defined by, \[f\left( x \right) = \left| x \right|\]and \[g\left( x \right) = \left[ {x - 3} \right]\] for \[x \in \mathbb{R}\].
\[\left[ . \right]\] denotes greatest integer function,
We have to find out the set \[\left\{ {g\left( {f\left( x \right)} \right):\dfrac{{ - 8}}{5} < x < \dfrac{8}{5}} \right\}\]
Now, \[g\left( {f\left( x \right)} \right) = g\left( {\left| x \right|} \right)\], since, \[f\left( x \right) = \left| x \right|\] is given.
Again, \[g\left( {f\left( x \right)} \right) = g\left( {\left| x \right|} \right) = \left[ {\left| x \right| - 3} \right]\] since, \[g\left( x \right) = \left[ {x - 3} \right]\] for \[x \in \mathbb{R}\].
Now we need to consider the region, \[\dfrac{{ - 8}}{5} < x < \dfrac{8}{5}\]
If we take, \[x = 0\] then, \[g\left( {f\left( x \right)} \right) = \left[ {\left| 0 \right| - 3} \right] = - 3\].
If we take, \[x = \dfrac{1}{2}\] then \[g\left( {f\left( x \right)} \right) = \left[ {\left| {\dfrac{1}{2}} \right| - 3} \right] = \left[ {\dfrac{1}{2} - 3} \right] = \left[ {\dfrac{{ - 5}}{2}} \right] = - 3\]
As \[ - 3 < - \dfrac{5}{2} < - 2\] and for box function the greatest integer function, returns the integer just below the value entered.
If we take, \[x = - \dfrac{1}{2}\] then \[g\left( {f\left( x \right)} \right) = \left[ {\left| { - \dfrac{1}{2}} \right| - 3} \right] = \left[ {\dfrac{1}{2} - 3} \right] = \left[ {\dfrac{{ - 5}}{2}} \right] = - 3\]
If we take, \[x = 1\] then, \[g\left( {f\left( x \right)} \right) = \left[ {\left| 1 \right| - 3} \right] = \left[ {1 - 3} \right] = - 2\].
Hence, \[\left\{ {g\left( {f\left( x \right)} \right):\dfrac{{ - 8}}{5} < x < \dfrac{8}{5}} \right\} = \]\[\left\{ { - 3, - 2} \right\}\].
Thus (C) is the correct option.
Note: Modulus of a number will always return the positive value.
That is for example, \[\left| 2 \right| = 2\& \] also \[\left| { - 2} \right| = 2\].
The box function is the greatest integer function, returning the integer just below the value entered, denoted by \[\left[ x \right]\] .
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
We know that Modulus is the function which gives the absolute value of a real or complex number. It will always return the positive value.
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by \[\left[ x \right]\] .
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that \[f:\mathbb{R} \to \mathbb{R}\] and \[g:\mathbb{R} \to \mathbb{R}\] defined by, \[f\left( x \right) = \left| x \right|\]and \[g\left( x \right) = \left[ {x - 3} \right]\] for \[x \in \mathbb{R}\].
\[\left[ . \right]\] denotes greatest integer function,
We have to find out the set \[\left\{ {g\left( {f\left( x \right)} \right):\dfrac{{ - 8}}{5} < x < \dfrac{8}{5}} \right\}\]
Now, \[g\left( {f\left( x \right)} \right) = g\left( {\left| x \right|} \right)\], since, \[f\left( x \right) = \left| x \right|\] is given.
Again, \[g\left( {f\left( x \right)} \right) = g\left( {\left| x \right|} \right) = \left[ {\left| x \right| - 3} \right]\] since, \[g\left( x \right) = \left[ {x - 3} \right]\] for \[x \in \mathbb{R}\].
Now we need to consider the region, \[\dfrac{{ - 8}}{5} < x < \dfrac{8}{5}\]
If we take, \[x = 0\] then, \[g\left( {f\left( x \right)} \right) = \left[ {\left| 0 \right| - 3} \right] = - 3\].
If we take, \[x = \dfrac{1}{2}\] then \[g\left( {f\left( x \right)} \right) = \left[ {\left| {\dfrac{1}{2}} \right| - 3} \right] = \left[ {\dfrac{1}{2} - 3} \right] = \left[ {\dfrac{{ - 5}}{2}} \right] = - 3\]
As \[ - 3 < - \dfrac{5}{2} < - 2\] and for box function the greatest integer function, returns the integer just below the value entered.
If we take, \[x = - \dfrac{1}{2}\] then \[g\left( {f\left( x \right)} \right) = \left[ {\left| { - \dfrac{1}{2}} \right| - 3} \right] = \left[ {\dfrac{1}{2} - 3} \right] = \left[ {\dfrac{{ - 5}}{2}} \right] = - 3\]
If we take, \[x = 1\] then, \[g\left( {f\left( x \right)} \right) = \left[ {\left| 1 \right| - 3} \right] = \left[ {1 - 3} \right] = - 2\].
Hence, \[\left\{ {g\left( {f\left( x \right)} \right):\dfrac{{ - 8}}{5} < x < \dfrac{8}{5}} \right\} = \]\[\left\{ { - 3, - 2} \right\}\].
Thus (C) is the correct option.
Note: Modulus of a number will always return the positive value.
That is for example, \[\left| 2 \right| = 2\& \] also \[\left| { - 2} \right| = 2\].
The box function is the greatest integer function, returning the integer just below the value entered, denoted by \[\left[ x \right]\] .
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE