
If for nonzero x, \[af(x) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5\] where \[a \ne b\] , then \[f(2) = \]
A. \[\dfrac{{3(2b + 3a)}}{{2\left( {{a^2} - {b^2}} \right)}}\]
B. \[\dfrac{{3(2b - 3a)}}{{2\left( {{a^2} - {b^2}} \right)}}\]
C. \[\dfrac{{3(3a - 2b)}}{{2\left( {{a^2} - {b^2}} \right)}}\]
D. \[\dfrac{6}{{a + b}}\]
Answer
493.8k+ views
Hint: In the given equation \[af(x) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5\] , first put x=2 and then put \[x = \dfrac{1}{2}\] you will get two equations containing \[f(2)\] and \[f\left( {\dfrac{1}{2}} \right)\] and then eliminate \[f\left( {\dfrac{1}{2}} \right)\] to get the value of \[f(2)\] .
Complete step by step answer:
As discussed in the hint let us do the same.
We will put x=2 in \[af(x) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5\] and will get
\[af(2) + bf\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2} - 5........................(i)\]
Also if we put \[f\left( {\dfrac{1}{2}} \right)\] we will surely get
\[af\left( {\dfrac{1}{2}} \right) + bf\left( 2 \right) = 2 - 5........................(ii)\]
Now in the equations we have both \[f(2)\] and \[f\left( {\dfrac{1}{2}} \right)\]
So let us eliminate \[f\left( {\dfrac{1}{2}} \right)\]
For that we have to first find the value of \[f\left( {\dfrac{1}{2}} \right)\] in terms of \[f(2)\]
Let us get the value of \[f\left( {\dfrac{1}{2}} \right)\] from equation (ii)
\[\begin{array}{l}
\therefore af\left( {\dfrac{1}{2}} \right) + bf\left( 2 \right) = 2 - 5\\
\Rightarrow af\left( {\dfrac{1}{2}} \right) + bf\left( 2 \right) = - 3\\
\Rightarrow af\left( {\dfrac{1}{2}} \right) = - 3 - bf\left( 2 \right)\\
\Rightarrow f\left( {\dfrac{1}{2}} \right) = \dfrac{{ - 3 - bf\left( 2 \right)}}{a}
\end{array}\]
Now as we have the value of \[f\left( {\dfrac{1}{2}} \right)\] let us put the same value in equation (i) we will get it as
\[\begin{array}{l}
\therefore af(2) + bf\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2} - 5\\
\Rightarrow af(2) + b\left( {\dfrac{{ - 3 - bf\left( 2 \right)}}{a}} \right) = \dfrac{{1 - 10}}{2}\\
\Rightarrow af(2) - \dfrac{{3b}}{a} - \dfrac{{{b^2}f(2)}}{a} = - \dfrac{9}{2}\\
\Rightarrow af(2) - \dfrac{{{b^2}f(2)}}{a} = - \dfrac{9}{2} + \dfrac{{3b}}{a}\\
\Rightarrow f(2)\left( {\dfrac{{{a^2} - {b^2}}}{a}} \right) = \dfrac{{ - 9a + 6b}}{{2a}}\\
\Rightarrow f(2)\left( {{a^2} - {b^2}} \right) = \dfrac{{ - 9a + 6b}}{2}\\
\Rightarrow f(2) = \dfrac{{ - 9a + 6b}}{{2\left( {{a^2} - {b^2}} \right)}}\\
\Rightarrow f(2) = \dfrac{{3(2b - 3a)}}{{2\left( {{a^2} - {b^2}} \right)}}
\end{array}\]
So, the correct answer is “Option B”.
Note: we can also do this question by elimination method rather than substitution method just by multiplying the whole equation (ii) by \[\dfrac{b}{a}\] which will make the coefficient of \[f\left( {\dfrac{1}{2}} \right)\] equal to that of we have in equation (i) from where we can eliminate \[f\left( {\dfrac{1}{2}} \right)\] .
Complete step by step answer:
As discussed in the hint let us do the same.
We will put x=2 in \[af(x) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5\] and will get
\[af(2) + bf\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2} - 5........................(i)\]
Also if we put \[f\left( {\dfrac{1}{2}} \right)\] we will surely get
\[af\left( {\dfrac{1}{2}} \right) + bf\left( 2 \right) = 2 - 5........................(ii)\]
Now in the equations we have both \[f(2)\] and \[f\left( {\dfrac{1}{2}} \right)\]
So let us eliminate \[f\left( {\dfrac{1}{2}} \right)\]
For that we have to first find the value of \[f\left( {\dfrac{1}{2}} \right)\] in terms of \[f(2)\]
Let us get the value of \[f\left( {\dfrac{1}{2}} \right)\] from equation (ii)
\[\begin{array}{l}
\therefore af\left( {\dfrac{1}{2}} \right) + bf\left( 2 \right) = 2 - 5\\
\Rightarrow af\left( {\dfrac{1}{2}} \right) + bf\left( 2 \right) = - 3\\
\Rightarrow af\left( {\dfrac{1}{2}} \right) = - 3 - bf\left( 2 \right)\\
\Rightarrow f\left( {\dfrac{1}{2}} \right) = \dfrac{{ - 3 - bf\left( 2 \right)}}{a}
\end{array}\]
Now as we have the value of \[f\left( {\dfrac{1}{2}} \right)\] let us put the same value in equation (i) we will get it as
\[\begin{array}{l}
\therefore af(2) + bf\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2} - 5\\
\Rightarrow af(2) + b\left( {\dfrac{{ - 3 - bf\left( 2 \right)}}{a}} \right) = \dfrac{{1 - 10}}{2}\\
\Rightarrow af(2) - \dfrac{{3b}}{a} - \dfrac{{{b^2}f(2)}}{a} = - \dfrac{9}{2}\\
\Rightarrow af(2) - \dfrac{{{b^2}f(2)}}{a} = - \dfrac{9}{2} + \dfrac{{3b}}{a}\\
\Rightarrow f(2)\left( {\dfrac{{{a^2} - {b^2}}}{a}} \right) = \dfrac{{ - 9a + 6b}}{{2a}}\\
\Rightarrow f(2)\left( {{a^2} - {b^2}} \right) = \dfrac{{ - 9a + 6b}}{2}\\
\Rightarrow f(2) = \dfrac{{ - 9a + 6b}}{{2\left( {{a^2} - {b^2}} \right)}}\\
\Rightarrow f(2) = \dfrac{{3(2b - 3a)}}{{2\left( {{a^2} - {b^2}} \right)}}
\end{array}\]
So, the correct answer is “Option B”.
Note: we can also do this question by elimination method rather than substitution method just by multiplying the whole equation (ii) by \[\dfrac{b}{a}\] which will make the coefficient of \[f\left( {\dfrac{1}{2}} \right)\] equal to that of we have in equation (i) from where we can eliminate \[f\left( {\dfrac{1}{2}} \right)\] .
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

Difference Between Plant Cell and Animal Cell

Draw an outline map of India and mark the following class 9 social science CBSE

Differentiate between the Western and the Eastern class 9 social science CBSE

What is pollution? How many types of pollution? Define it
