Answer
Verified
444.9k+ views
Hint: Here, we are required to find the relation between the given two expressions. We will use the range of \[\cos x\] and change the limit of the integral accordingly. We will find the value of the first integral and then substitute its value in the second integral. We will solve it further to get the required relation between the two expressions.
Complete step-by-step answer:
According to the question, we are given that \[{I_1} = \int\limits_0^{n\pi } {f\left( {\left| {\cos x} \right|} \right)} dx\]and \[{I_2} = \int\limits_0^{5\pi } {f\left( {\left| {\cos x} \right|} \right)} dx\]
Now, as we know that \[\cos x \in \left[ {0,\pi } \right]\].
Therefore, period of \[\left| {\cos x} \right| = \pi \]
Hence, for \[{I_1} = \int\limits_0^{n\pi } {f\left( {\left| {\cos x} \right|} \right)} dx\] , we can write this as:
\[ \Rightarrow {I_1} = n\int\limits_0^\pi {f\left( {\left| {\cos x} \right|} \right)} dx\]………………………….. \[\left( 1 \right)\]
Similarly, for \[{I_2} = \int\limits_0^{5\pi } {f\left( {\left| {\cos x} \right|} \right)} dx\] ,
\[ \Rightarrow {I_2} = 5\int\limits_0^\pi {f\left( {\left| {\cos x} \right|} \right)} dx\]
Dividing both sides by 5, we get,
\[ \Rightarrow \dfrac{{{I_2}}}{5} = \int\limits_0^\pi {f\left( {\left| {\cos x} \right|} \right)} dx\] ……………………………. \[\left( 2 \right)\]
Now, substituting the value of \[\int\limits_0^\pi {f\left( {\left| {\cos x} \right|} \right)} dx\] from equation \[\left( 2 \right)\] in equation \[\left( 1 \right)\] , we get,
\[{I_1} = n\dfrac{{{I_2}}}{5}\]
Dividing both sides by \[n\], we get
\[ \Rightarrow \dfrac{{{I_1}}}{n} = \dfrac{{{I_2}}}{5}\]
Therefore, if \[{I_1} = \int\limits_0^{n\pi } {f\left( {\left| {\cos x} \right|} \right)} dx\] and \[{I_2} = \int\limits_0^{5\pi } {f\left( {\left| {\cos x} \right|} \right)} dx\] and \[\left( {n \in N} \right)\] , then \[\dfrac{{{I_1}}}{n} = \dfrac{{{I_2}}}{5}\]
Hence, option C is the correct answer.
Note: In this question, we are given two definite integrals having the lower and upper limits respectively. As we know that the range of \[\cos x\] is \[\left[ {0,\pi } \right]\] this means that the minimum value which the trigonometric function \[\cos x\] can take is 0 and the maximum value taken by it can be \[\pi \]. We have shown the closed brackets because \[\cos x\] includes both the values 0 and \[\pi \]. Whereas, in the case of \[\sec x\] , its range lies between \[\left( {0,\pi } \right)\]. Hence, these open brackets show that it can never take the values 0 and \[\pi \] and hence, it will always lie between these values. Therefore, for solving this question, it is really important to know the ranges of various trigonometric functions.
Complete step-by-step answer:
According to the question, we are given that \[{I_1} = \int\limits_0^{n\pi } {f\left( {\left| {\cos x} \right|} \right)} dx\]and \[{I_2} = \int\limits_0^{5\pi } {f\left( {\left| {\cos x} \right|} \right)} dx\]
Now, as we know that \[\cos x \in \left[ {0,\pi } \right]\].
Therefore, period of \[\left| {\cos x} \right| = \pi \]
Hence, for \[{I_1} = \int\limits_0^{n\pi } {f\left( {\left| {\cos x} \right|} \right)} dx\] , we can write this as:
\[ \Rightarrow {I_1} = n\int\limits_0^\pi {f\left( {\left| {\cos x} \right|} \right)} dx\]………………………….. \[\left( 1 \right)\]
Similarly, for \[{I_2} = \int\limits_0^{5\pi } {f\left( {\left| {\cos x} \right|} \right)} dx\] ,
\[ \Rightarrow {I_2} = 5\int\limits_0^\pi {f\left( {\left| {\cos x} \right|} \right)} dx\]
Dividing both sides by 5, we get,
\[ \Rightarrow \dfrac{{{I_2}}}{5} = \int\limits_0^\pi {f\left( {\left| {\cos x} \right|} \right)} dx\] ……………………………. \[\left( 2 \right)\]
Now, substituting the value of \[\int\limits_0^\pi {f\left( {\left| {\cos x} \right|} \right)} dx\] from equation \[\left( 2 \right)\] in equation \[\left( 1 \right)\] , we get,
\[{I_1} = n\dfrac{{{I_2}}}{5}\]
Dividing both sides by \[n\], we get
\[ \Rightarrow \dfrac{{{I_1}}}{n} = \dfrac{{{I_2}}}{5}\]
Therefore, if \[{I_1} = \int\limits_0^{n\pi } {f\left( {\left| {\cos x} \right|} \right)} dx\] and \[{I_2} = \int\limits_0^{5\pi } {f\left( {\left| {\cos x} \right|} \right)} dx\] and \[\left( {n \in N} \right)\] , then \[\dfrac{{{I_1}}}{n} = \dfrac{{{I_2}}}{5}\]
Hence, option C is the correct answer.
Note: In this question, we are given two definite integrals having the lower and upper limits respectively. As we know that the range of \[\cos x\] is \[\left[ {0,\pi } \right]\] this means that the minimum value which the trigonometric function \[\cos x\] can take is 0 and the maximum value taken by it can be \[\pi \]. We have shown the closed brackets because \[\cos x\] includes both the values 0 and \[\pi \]. Whereas, in the case of \[\sec x\] , its range lies between \[\left( {0,\pi } \right)\]. Hence, these open brackets show that it can never take the values 0 and \[\pi \] and hence, it will always lie between these values. Therefore, for solving this question, it is really important to know the ranges of various trigonometric functions.
Recently Updated Pages
A ray of light passes through an equilateral prism class 12 physics JEE_Main
The size of the image of an object which is at infinity class 12 physics JEE_Main
When a glass slab is placed on a cross made on a sheet class 12 physics JEE_Main
Rays from Sun converge at a point 15 cm in front of class 12 physics JEE_Main
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE