If $\int {{e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right)} dx = {e^{\sec x}}f(x) + C,$ find a possible choice of f(x)
A. $\sec x - \tan x - \dfrac{1}{2}$
B. $x\sec x + \tan x + \dfrac{1}{2}$
C. $\sec x + x\tan x - \dfrac{1}{2}$
D. $\sec x + \tan x + \dfrac{1}{2}$
Answer
Verified
510k+ views
Hint: We need to know the formulae of integration of basic trigonometric functions to solve the given problem.
Complete step-by-step answer:
Given equation is $\int {{e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right)} dx = {e^{\sec x}}f(x) + C$
Differentiating the above equation both sides with respect to x,
$${e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right) = {e^{\sec x}} \cdot \sec x \cdot \tan x \cdot f(x) + {e^{\sec x}} \cdot f'(x)$$
Cancelling the common terms on both sides of the above equation, we get
$$f'(x) = {\sec ^2}x + \tan x \cdot \sec x$$
We need to find f(x), so integrating the above equation with respect to x,
$$ \Rightarrow \int {f'(x)} = \int {({{\sec }^2}x + \tan x \cdot \sec x} )dx$$
$$ \Rightarrow f(x) = \tan x + \sec x + c$$
$\therefore $Option D is the correct answer.
Note: We need the value of f(x) from the given equation, for simplifying, we differentiate the given equation to get rid of extra terms and then again integrate to get the desired result. We used these basic integration formulae
$$\int {{{\sec }^2}x\;} dx = \tan x + c$$
$$\int {\tan x \cdot \sec x} \;dx = \sec x + c$$
Complete step-by-step answer:
Given equation is $\int {{e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right)} dx = {e^{\sec x}}f(x) + C$
Differentiating the above equation both sides with respect to x,
$${e^{\sec x}}\left( {\sec x\tan xf(x) + (\sec x\tan x + {{\sec }^2}x)} \right) = {e^{\sec x}} \cdot \sec x \cdot \tan x \cdot f(x) + {e^{\sec x}} \cdot f'(x)$$
Cancelling the common terms on both sides of the above equation, we get
$$f'(x) = {\sec ^2}x + \tan x \cdot \sec x$$
We need to find f(x), so integrating the above equation with respect to x,
$$ \Rightarrow \int {f'(x)} = \int {({{\sec }^2}x + \tan x \cdot \sec x} )dx$$
$$ \Rightarrow f(x) = \tan x + \sec x + c$$
$\therefore $Option D is the correct answer.
Note: We need the value of f(x) from the given equation, for simplifying, we differentiate the given equation to get rid of extra terms and then again integrate to get the desired result. We used these basic integration formulae
$$\int {{{\sec }^2}x\;} dx = \tan x + c$$
$$\int {\tan x \cdot \sec x} \;dx = \sec x + c$$
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE
Can anyone list 10 advantages and disadvantages of friction
Distinguish between Mitosis and Meiosis class 11 biology CBSE