If \[L.C.M.\left\{ {1,2,3, \ldots ,200} \right\} = b \times L.C.M.\left\{ {102,103,...,200} \right\}\], then \[b = \]
Answer
Verified
463.5k+ views
Hint: We will assume that \[LCM\left\{ {102,103,..,200} \right\}\] to be \[x\] and \[LCM\left\{ {1,2,3,...,99,100,101,102,...,200} \right\}\] to be \[y\]. We will simplify the equation and express \[b\] in terms of \[x\] and \[y\]. We will find the value of \[x\]and \[y\] using logic and the formula for the Least Common Multiple.
Formulas used:We will use the formula \[LCM\left\{ {a,b,c} \right\} = LCM\left\{ {c,LCM\left\{ {a,b} \right\}} \right\}\].
Complete step-by-step answer:
The L.C.M. of 2 or more numbers is the least common multiple of those numbers.
We have the equation
\[ \Rightarrow L.C.M.\left\{ {1,2,3, \ldots ,200} \right\} = b \times L.C.M.\left\{ {102,103,...,200} \right\}\]
On dividing both sides by \[L.C.M.\left\{ {102,103,...,200} \right\}\], we get
\[ \Rightarrow \dfrac{{L.C.M.\left\{ {1,2,3, \ldots ,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}} = \dfrac{{b \times L.C.M.\left\{ {102,103,...,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}}\]
\[ \Rightarrow \dfrac{{L.C.M.\left\{ {1,2,3, \ldots ,99,100,101,102,...,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}} = b\left( * \right)\]
We will assume that \[LCM\left\{ {102,103,..,200} \right\} = x\] and \[LCM\left\{ {1,2,3,...,99,100,101,102,...,200} \right\} = y\] .
We know that some or other multiple of all the numbers lying between 1 and 100 will lie between 101 and 200. For example, the \[{51^{th}}\] multiple of 2 is 102 and it lies between 101 and 200, the 4th multiple of 30 is 120 and it lies between 101 and 200, the 2nd multiple of 99 is 198 and lies between 192 and 200…and so on.
So, we can safely say that
\[ \Rightarrow L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\} = L.C.M.\left\{ {101,102,103,...,200} \right\}{\rm{ }}\left( 1 \right)\]
We know that \[LCM\left\{ {a,b,c} \right\} = LCM\left\{ {c,LCM\left\{ {a,b} \right\}} \right\}\], so \[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = LCM\left\{ {101,LCM\left\{ {102,103,..,200} \right\}} \right\}\]
\[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = LCM\left\{ {101,x} \right\}{\rm{ }}\left( 2 \right)\]
101 is a prime number and no multiple of 101 lies between 102 and 200. So,
\[ \Rightarrow L.C.M.\left\{ {101,y} \right\} = 101 \times x{\rm{ }}\left( 3 \right)\]
We will substitute equation (1) in equation (2):
\[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = 101x{\rm{ }}\left( 4 \right)\]
We will substitute equation (4) in equation (1)
\[ \Rightarrow L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\} = 101x\]
We will substitute \[101x\] for \[L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\}\] and \[x\] for \[LCM\left\{ {102,103,..,200} \right\}\] in equation (*):
\[ \Rightarrow \dfrac{{101x}}{x} = b\]
\[ \Rightarrow 101 = b\]
\[\therefore\] The value of \[b\] is 101.
Note: The least common multiple of 2 numbers is the absolute value of their product divided by their greatest common divisor:
\[LCM\left( {ab} \right) = \dfrac{{\left| {ab} \right|}}{{\gcd \left( {a,b} \right)}}\]. The Least Common Multiple of a prime number (say \[p\]) with another number (say \[q\] )that is not its multiple is the product of the 2 numbers (\[pq\])
Formulas used:We will use the formula \[LCM\left\{ {a,b,c} \right\} = LCM\left\{ {c,LCM\left\{ {a,b} \right\}} \right\}\].
Complete step-by-step answer:
The L.C.M. of 2 or more numbers is the least common multiple of those numbers.
We have the equation
\[ \Rightarrow L.C.M.\left\{ {1,2,3, \ldots ,200} \right\} = b \times L.C.M.\left\{ {102,103,...,200} \right\}\]
On dividing both sides by \[L.C.M.\left\{ {102,103,...,200} \right\}\], we get
\[ \Rightarrow \dfrac{{L.C.M.\left\{ {1,2,3, \ldots ,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}} = \dfrac{{b \times L.C.M.\left\{ {102,103,...,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}}\]
\[ \Rightarrow \dfrac{{L.C.M.\left\{ {1,2,3, \ldots ,99,100,101,102,...,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}} = b\left( * \right)\]
We will assume that \[LCM\left\{ {102,103,..,200} \right\} = x\] and \[LCM\left\{ {1,2,3,...,99,100,101,102,...,200} \right\} = y\] .
We know that some or other multiple of all the numbers lying between 1 and 100 will lie between 101 and 200. For example, the \[{51^{th}}\] multiple of 2 is 102 and it lies between 101 and 200, the 4th multiple of 30 is 120 and it lies between 101 and 200, the 2nd multiple of 99 is 198 and lies between 192 and 200…and so on.
So, we can safely say that
\[ \Rightarrow L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\} = L.C.M.\left\{ {101,102,103,...,200} \right\}{\rm{ }}\left( 1 \right)\]
We know that \[LCM\left\{ {a,b,c} \right\} = LCM\left\{ {c,LCM\left\{ {a,b} \right\}} \right\}\], so \[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = LCM\left\{ {101,LCM\left\{ {102,103,..,200} \right\}} \right\}\]
\[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = LCM\left\{ {101,x} \right\}{\rm{ }}\left( 2 \right)\]
101 is a prime number and no multiple of 101 lies between 102 and 200. So,
\[ \Rightarrow L.C.M.\left\{ {101,y} \right\} = 101 \times x{\rm{ }}\left( 3 \right)\]
We will substitute equation (1) in equation (2):
\[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = 101x{\rm{ }}\left( 4 \right)\]
We will substitute equation (4) in equation (1)
\[ \Rightarrow L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\} = 101x\]
We will substitute \[101x\] for \[L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\}\] and \[x\] for \[LCM\left\{ {102,103,..,200} \right\}\] in equation (*):
\[ \Rightarrow \dfrac{{101x}}{x} = b\]
\[ \Rightarrow 101 = b\]
\[\therefore\] The value of \[b\] is 101.
Note: The least common multiple of 2 numbers is the absolute value of their product divided by their greatest common divisor:
\[LCM\left( {ab} \right) = \dfrac{{\left| {ab} \right|}}{{\gcd \left( {a,b} \right)}}\]. The Least Common Multiple of a prime number (say \[p\]) with another number (say \[q\] )that is not its multiple is the product of the 2 numbers (\[pq\])
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Collective noun a of sailors class 7 english CBSE
Convert 200 Million dollars in rupees class 7 maths CBSE
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
What are the controls affecting the climate of Ind class 7 social science CBSE
The southernmost point of the Indian mainland is known class 7 social studies CBSE