If one-quarter of all three-element subsets of the set ${\text{A = }}{{\text{a}}_{\text{1}}}{\text{,}}{{\text{a}}_{\text{2}}}{\text{,}}{{\text{a}}_{\text{3}}}....{{\text{a}}_{\text{n}}}$ contains the element ${{\text{a}}_{\text{3}}}$, then n is equal to?
Answer
Verified
482.1k+ views
Hint: First we’ll find the number of subsets of A containing three elements and the number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$. Then will form an equation according to the data given in the question, we’ll obtain an equation in ‘n’ which will get us the value of ‘n’.
Complete step by step answer:
Given data: one-quarter of all three-element subsets of the set ${\text{A = }}{{\text{a}}_{\text{1}}}{\text{,}}{{\text{a}}_{\text{2}}}{\text{,}}{{\text{a}}_{\text{3}}}....{{\text{a}}_{\text{n}}}$ contains the element ${{\text{a}}_{\text{3}}}$
Number of subsets of A containing three elements is ${}^{\text{n}}{{\text{C}}_{\text{3}}}$
The number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$is${}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$
Now, according to the given statement, we can say that
$\dfrac{{\text{1}}}{{\text{4}}}{}^{\text{n}}{{\text{C}}_{\text{3}}}{\text{ = }}{}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$
Using ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n - r}}} \right){\text{!}}}}$ , we’ll get
$\dfrac{{\text{1}}}{{\text{4}}}\dfrac{{{\text{n!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 1 - 2}}} \right){\text{!}}}}$
Now, using ${\text{n! = n}}\left( {{\text{n - 1}}} \right){\text{!}}$
\[
\dfrac{{\text{1}}}{{\text{4}}}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 3}}} \right){\text{!}}}} \\
\Rightarrow \dfrac{{\text{1}}}{{\text{4}}}\dfrac{{\text{n}}}{{{\text{3!}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{2!}}}} \\
\]
Now, solving for n, we’ll obtain
\[
{\text{n = }}\dfrac{{\text{4}}}{{{\text{2!}}}}{\text{3!}} \\
\Rightarrow {\text{n = }}\dfrac{{\text{4}}}{{{\text{2!}}}}{\text{3(2!)}} \\
\Rightarrow {\text{n = 4(3)}} \\
\Rightarrow {\text{n = 12}} \\
\]
Therefore, the value of n is 12
Note: We can also find the number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$that will be equal to the difference between the number of subsets of A containing three elements and the number of three-element subsets of A do not contain ${{\text{a}}_{\text{3}}}$ i.e.
${\text{ = }}{}^{\text{n}}{{\text{C}}_{\text{3}}}{\text{ - }}{}^{{\text{n - 1}}}{{\text{C}}_{\text{3}}}$
Using ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n - r}}} \right){\text{!}}}}$ ,
\[{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\]
Using ${\text{n! = n}}\left( {{\text{n - 1}}} \right){\text{!}}$
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\]
Dividing and multiplying the second term with (n-3)
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\left[ {\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\left( {\dfrac{{{\text{n - 3}}}}{{{\text{n - 3}}}}} \right)} \right]\]
Using ${\text{n}}\left( {{\text{n - 1}}} \right){\text{! = n!}}$
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\left( {{\text{n - 3}}} \right)\]
Now, taking common \[\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\]from both terms
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\left[ {{\text{n - }}\left( {{\text{n - 3}}} \right)} \right]\]
On further simplification we get,
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{3}}\]
Using ${\text{n}}\left( {{\text{n - 1}}} \right){\text{! = n!}}$, and simplifying we get,
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\]
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 1 - 2}}} \right){\text{!}}}}\]
We can write it as ${}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$and is having the same value as in our above solution.
Complete step by step answer:
Given data: one-quarter of all three-element subsets of the set ${\text{A = }}{{\text{a}}_{\text{1}}}{\text{,}}{{\text{a}}_{\text{2}}}{\text{,}}{{\text{a}}_{\text{3}}}....{{\text{a}}_{\text{n}}}$ contains the element ${{\text{a}}_{\text{3}}}$
Number of subsets of A containing three elements is ${}^{\text{n}}{{\text{C}}_{\text{3}}}$
The number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$is${}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$
Now, according to the given statement, we can say that
$\dfrac{{\text{1}}}{{\text{4}}}{}^{\text{n}}{{\text{C}}_{\text{3}}}{\text{ = }}{}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$
Using ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n - r}}} \right){\text{!}}}}$ , we’ll get
$\dfrac{{\text{1}}}{{\text{4}}}\dfrac{{{\text{n!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 1 - 2}}} \right){\text{!}}}}$
Now, using ${\text{n! = n}}\left( {{\text{n - 1}}} \right){\text{!}}$
\[
\dfrac{{\text{1}}}{{\text{4}}}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 3}}} \right){\text{!}}}} \\
\Rightarrow \dfrac{{\text{1}}}{{\text{4}}}\dfrac{{\text{n}}}{{{\text{3!}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{2!}}}} \\
\]
Now, solving for n, we’ll obtain
\[
{\text{n = }}\dfrac{{\text{4}}}{{{\text{2!}}}}{\text{3!}} \\
\Rightarrow {\text{n = }}\dfrac{{\text{4}}}{{{\text{2!}}}}{\text{3(2!)}} \\
\Rightarrow {\text{n = 4(3)}} \\
\Rightarrow {\text{n = 12}} \\
\]
Therefore, the value of n is 12
Note: We can also find the number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$that will be equal to the difference between the number of subsets of A containing three elements and the number of three-element subsets of A do not contain ${{\text{a}}_{\text{3}}}$ i.e.
${\text{ = }}{}^{\text{n}}{{\text{C}}_{\text{3}}}{\text{ - }}{}^{{\text{n - 1}}}{{\text{C}}_{\text{3}}}$
Using ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n - r}}} \right){\text{!}}}}$ ,
\[{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\]
Using ${\text{n! = n}}\left( {{\text{n - 1}}} \right){\text{!}}$
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\]
Dividing and multiplying the second term with (n-3)
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\left[ {\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\left( {\dfrac{{{\text{n - 3}}}}{{{\text{n - 3}}}}} \right)} \right]\]
Using ${\text{n}}\left( {{\text{n - 1}}} \right){\text{! = n!}}$
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\left( {{\text{n - 3}}} \right)\]
Now, taking common \[\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\]from both terms
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\left[ {{\text{n - }}\left( {{\text{n - 3}}} \right)} \right]\]
On further simplification we get,
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{3}}\]
Using ${\text{n}}\left( {{\text{n - 1}}} \right){\text{! = n!}}$, and simplifying we get,
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\]
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 1 - 2}}} \right){\text{!}}}}\]
We can write it as ${}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$and is having the same value as in our above solution.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE
Can anyone list 10 advantages and disadvantages of friction
Distinguish between Mitosis and Meiosis class 11 biology CBSE