
If one-quarter of all three-element subsets of the set ${\text{A = }}{{\text{a}}_{\text{1}}}{\text{,}}{{\text{a}}_{\text{2}}}{\text{,}}{{\text{a}}_{\text{3}}}....{{\text{a}}_{\text{n}}}$ contains the element ${{\text{a}}_{\text{3}}}$, then n is equal to?
Answer
592.2k+ views
Hint: First we’ll find the number of subsets of A containing three elements and the number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$. Then will form an equation according to the data given in the question, we’ll obtain an equation in ‘n’ which will get us the value of ‘n’.
Complete step by step answer:
Given data: one-quarter of all three-element subsets of the set ${\text{A = }}{{\text{a}}_{\text{1}}}{\text{,}}{{\text{a}}_{\text{2}}}{\text{,}}{{\text{a}}_{\text{3}}}....{{\text{a}}_{\text{n}}}$ contains the element ${{\text{a}}_{\text{3}}}$
Number of subsets of A containing three elements is ${}^{\text{n}}{{\text{C}}_{\text{3}}}$
The number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$is${}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$
Now, according to the given statement, we can say that
$\dfrac{{\text{1}}}{{\text{4}}}{}^{\text{n}}{{\text{C}}_{\text{3}}}{\text{ = }}{}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$
Using ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n - r}}} \right){\text{!}}}}$ , we’ll get
$\dfrac{{\text{1}}}{{\text{4}}}\dfrac{{{\text{n!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 1 - 2}}} \right){\text{!}}}}$
Now, using ${\text{n! = n}}\left( {{\text{n - 1}}} \right){\text{!}}$
\[
\dfrac{{\text{1}}}{{\text{4}}}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 3}}} \right){\text{!}}}} \\
\Rightarrow \dfrac{{\text{1}}}{{\text{4}}}\dfrac{{\text{n}}}{{{\text{3!}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{2!}}}} \\
\]
Now, solving for n, we’ll obtain
\[
{\text{n = }}\dfrac{{\text{4}}}{{{\text{2!}}}}{\text{3!}} \\
\Rightarrow {\text{n = }}\dfrac{{\text{4}}}{{{\text{2!}}}}{\text{3(2!)}} \\
\Rightarrow {\text{n = 4(3)}} \\
\Rightarrow {\text{n = 12}} \\
\]
Therefore, the value of n is 12
Note: We can also find the number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$that will be equal to the difference between the number of subsets of A containing three elements and the number of three-element subsets of A do not contain ${{\text{a}}_{\text{3}}}$ i.e.
${\text{ = }}{}^{\text{n}}{{\text{C}}_{\text{3}}}{\text{ - }}{}^{{\text{n - 1}}}{{\text{C}}_{\text{3}}}$
Using ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n - r}}} \right){\text{!}}}}$ ,
\[{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\]
Using ${\text{n! = n}}\left( {{\text{n - 1}}} \right){\text{!}}$
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\]
Dividing and multiplying the second term with (n-3)
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\left[ {\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\left( {\dfrac{{{\text{n - 3}}}}{{{\text{n - 3}}}}} \right)} \right]\]
Using ${\text{n}}\left( {{\text{n - 1}}} \right){\text{! = n!}}$
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\left( {{\text{n - 3}}} \right)\]
Now, taking common \[\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\]from both terms
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\left[ {{\text{n - }}\left( {{\text{n - 3}}} \right)} \right]\]
On further simplification we get,
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{3}}\]
Using ${\text{n}}\left( {{\text{n - 1}}} \right){\text{! = n!}}$, and simplifying we get,
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\]
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 1 - 2}}} \right){\text{!}}}}\]
We can write it as ${}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$and is having the same value as in our above solution.
Complete step by step answer:
Given data: one-quarter of all three-element subsets of the set ${\text{A = }}{{\text{a}}_{\text{1}}}{\text{,}}{{\text{a}}_{\text{2}}}{\text{,}}{{\text{a}}_{\text{3}}}....{{\text{a}}_{\text{n}}}$ contains the element ${{\text{a}}_{\text{3}}}$
Number of subsets of A containing three elements is ${}^{\text{n}}{{\text{C}}_{\text{3}}}$
The number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$is${}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$
Now, according to the given statement, we can say that
$\dfrac{{\text{1}}}{{\text{4}}}{}^{\text{n}}{{\text{C}}_{\text{3}}}{\text{ = }}{}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$
Using ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n - r}}} \right){\text{!}}}}$ , we’ll get
$\dfrac{{\text{1}}}{{\text{4}}}\dfrac{{{\text{n!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 1 - 2}}} \right){\text{!}}}}$
Now, using ${\text{n! = n}}\left( {{\text{n - 1}}} \right){\text{!}}$
\[
\dfrac{{\text{1}}}{{\text{4}}}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 3}}} \right){\text{!}}}} \\
\Rightarrow \dfrac{{\text{1}}}{{\text{4}}}\dfrac{{\text{n}}}{{{\text{3!}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{2!}}}} \\
\]
Now, solving for n, we’ll obtain
\[
{\text{n = }}\dfrac{{\text{4}}}{{{\text{2!}}}}{\text{3!}} \\
\Rightarrow {\text{n = }}\dfrac{{\text{4}}}{{{\text{2!}}}}{\text{3(2!)}} \\
\Rightarrow {\text{n = 4(3)}} \\
\Rightarrow {\text{n = 12}} \\
\]
Therefore, the value of n is 12
Note: We can also find the number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$that will be equal to the difference between the number of subsets of A containing three elements and the number of three-element subsets of A do not contain ${{\text{a}}_{\text{3}}}$ i.e.
${\text{ = }}{}^{\text{n}}{{\text{C}}_{\text{3}}}{\text{ - }}{}^{{\text{n - 1}}}{{\text{C}}_{\text{3}}}$
Using ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n - r}}} \right){\text{!}}}}$ ,
\[{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\]
Using ${\text{n! = n}}\left( {{\text{n - 1}}} \right){\text{!}}$
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\]
Dividing and multiplying the second term with (n-3)
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\left[ {\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\left( {\dfrac{{{\text{n - 3}}}}{{{\text{n - 3}}}}} \right)} \right]\]
Using ${\text{n}}\left( {{\text{n - 1}}} \right){\text{! = n!}}$
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\left( {{\text{n - 3}}} \right)\]
Now, taking common \[\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\]from both terms
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\left[ {{\text{n - }}\left( {{\text{n - 3}}} \right)} \right]\]
On further simplification we get,
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{3}}\]
Using ${\text{n}}\left( {{\text{n - 1}}} \right){\text{! = n!}}$, and simplifying we get,
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\]
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 1 - 2}}} \right){\text{!}}}}\]
We can write it as ${}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$and is having the same value as in our above solution.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

