Answer
Verified
462.9k+ views
Hint: To solve this question, we will first write the values of direction cosines in the Cartesian form. After that, we will find the length of line OP which passes through point P ( x, y z ) and origin. After that, we will substitute the value of length OP = r in values of direction cosines and hence obtain the coordinates of P in terms of cosines of line OP.
Complete step-by-step solution
Before we solve this question, let us see what direction cosines are.
In three – dimension geometry, we have three axes which are the x-axis, y-axis, and z-axis. Now, let us assume that line OP passes through the origin in the three – dimensional space. Then, it is obvious that the line will make an angle each with the x-axis, y-axis, and z-axis respectively.
Now, cosines of each of these three angles that the line makes with the x-axis, y-axis, and z-axis respectively are called direction cosines of the line in three-dimensional space. In general, these direction cosines are denoted by using letters l, m, and n.
Now, we know that if l, m and n are direction cosines of a line passing through origin to point P(x, y, z), then $l=\dfrac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}$ , $m=\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}$, $n=\dfrac{z}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}$
Now as OP passes from O( 0, 0, 0 ) and P( x, y, z )
So, using distance formula
$OP=\sqrt{{{(x-0)}^{2}}+{{(y-0)}^{2}}+{{(z-0)}^{2}}}$
On simplifying, we get
$OP=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
As, given that OP = r
So, $r=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Substituting value of $r=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$ in values of direction cosines, we get
$l=\dfrac{x}{r}$ , $m=\dfrac{y}{r}$, $n=\dfrac{z}{r}$
Multiplying, both sides by r, we get
x = lr, y = mr and z = nr
Now, as (x, y, z ) are the coordinates of point P.
So, P ( lr, mr, nr )
Note: Always remember that if line passes through origin and point P ( x, y, z ) then direction cosines of line OP are equals to $l=\dfrac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}$ , $m=\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}$, $n=\dfrac{z}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}$. Also remember that length of line passing through points L( a, b, c ) and M( x, y, z ) is equals to $LM=\sqrt{{{(x-a)}^{2}}+{{(y-b)}^{2}}+{{(z-c)}^{2}}}$. Try not to make any error while solving the question.
Complete step-by-step solution
Before we solve this question, let us see what direction cosines are.
In three – dimension geometry, we have three axes which are the x-axis, y-axis, and z-axis. Now, let us assume that line OP passes through the origin in the three – dimensional space. Then, it is obvious that the line will make an angle each with the x-axis, y-axis, and z-axis respectively.
Now, cosines of each of these three angles that the line makes with the x-axis, y-axis, and z-axis respectively are called direction cosines of the line in three-dimensional space. In general, these direction cosines are denoted by using letters l, m, and n.
Now, we know that if l, m and n are direction cosines of a line passing through origin to point P(x, y, z), then $l=\dfrac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}$ , $m=\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}$, $n=\dfrac{z}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}$
Now as OP passes from O( 0, 0, 0 ) and P( x, y, z )
So, using distance formula
$OP=\sqrt{{{(x-0)}^{2}}+{{(y-0)}^{2}}+{{(z-0)}^{2}}}$
On simplifying, we get
$OP=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
As, given that OP = r
So, $r=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Substituting value of $r=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$ in values of direction cosines, we get
$l=\dfrac{x}{r}$ , $m=\dfrac{y}{r}$, $n=\dfrac{z}{r}$
Multiplying, both sides by r, we get
x = lr, y = mr and z = nr
Now, as (x, y, z ) are the coordinates of point P.
So, P ( lr, mr, nr )
Note: Always remember that if line passes through origin and point P ( x, y, z ) then direction cosines of line OP are equals to $l=\dfrac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}$ , $m=\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}$, $n=\dfrac{z}{\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}$. Also remember that length of line passing through points L( a, b, c ) and M( x, y, z ) is equals to $LM=\sqrt{{{(x-a)}^{2}}+{{(y-b)}^{2}}+{{(z-c)}^{2}}}$. Try not to make any error while solving the question.
Recently Updated Pages
Points A and B are situated along the extended axis class 12 physics JEE_Main
Two identical pn junctions may be connected in series class 12 physics JEE_Main
A piece of copper and another of germanium are cooled class 12 physics JEE_Main
A piece of semiconductor is connected in series in class 12 phy sec 1 JEE_Main
In a pn junction diode not connected to any circui class 12 physics JEE_Main
The width of depletion region in a pn junction is 500 class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE