
If the angle between the pair of straight lines represented by the equation \[{x^2} - 3xy + \lambda {y^2} + 3x - 5y + 2 = 0\] is ${\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$ where ‘$\lambda $’ is non-negative real number, then find ‘$\lambda $’.
Answer
582.3k+ views
Hint: The angle between the lines represented by $a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$ is given by $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
$ \Rightarrow \theta = {\tan ^{ - 1}}\left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
The lines are parallel if the angle between them is zero. Thus, the lines are parallel if $\theta = 0$
$ \Rightarrow \tan \theta = 0 \Rightarrow \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right| = 0$
$ \Rightarrow {h^2} = ab$
Complete step by step answer:
Given equation of the pair of straight lines represented by \[{x^2} - 3xy + \lambda {y^2} + 3x - 5y + 2 = 0\]…….(i)
As we know that the angle between the lines represented by $a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$ is given by $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Consider $a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$ …………..(ii)
On comparing equation (i) and (ii) we get the values as $a = 1,b = \lambda $ and $h = \dfrac{{ - 3}}{2}$.
Also the angle between the pair of straight lines represented by the equation \[{x^2} - 3xy + \lambda {y^2} + 3x - 5y + 2 = 0\] is ${\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$.
Let $\theta $ be the angle between the pair of straight lines represented by the equation
\[\Rightarrow {x^2} - 3xy + \lambda {y^2} + 3x - 5y + 2 = 0\] is ${\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$.
Therefore, $\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$………….(iii)
Now consider, $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ and
$\Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$
From equation $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ we can find out the value of the angle $\theta $.
As $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
$ \Rightarrow \theta = {\tan ^{ - 1}}\left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ ……………..(iv)
As L.H.S of equation (iii) and (iv) are equal therefore their R.H.S are also equal therefore,
${\Rightarrow \tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) = {\tan ^{ - 1}}\left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Now substituting the values as $a = 1,b = \lambda $ and $h = \dfrac{{ - 3}}{2}$ we get,
${\Rightarrow \tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) = {\tan ^{ - 1}}\left| {\dfrac{{2\sqrt {{{\left( {\dfrac{{ - 3}}{2}} \right)}^2} - 1 \times \lambda } }}{{1 + \lambda }}} \right|$
We can cancel out ${\tan ^{ - 1}}$ from both sides. So we are now left with the equation
$\Rightarrow \dfrac{1}{3} = \dfrac{{2\sqrt {{{\left( {\dfrac{{ - 3}}{2}} \right)}^2} - \lambda } }}{{1 + \lambda }}$
Solving the numerator of R.H.S we get,
$\Rightarrow \dfrac{1}{3} = \dfrac{{2\sqrt {\dfrac{{9 - 4\lambda }}{4}} }}{{1 + \lambda }}$.
By cross multiplication we get,
$\Rightarrow \dfrac{{1 + \lambda }}{1} = \dfrac{{3 \times 2 \times \sqrt {\dfrac{{9 - 4\lambda }}{4}} }}{1}$
$ \Rightarrow \dfrac{{1 + \lambda }}{6} = \sqrt {\dfrac{{9 - 4\lambda }}{4}} $
Taking square on both sides we get,
$\Rightarrow {(\dfrac{{1 + \lambda }}{6})^2} = {(\sqrt {\dfrac{{9 - 4\lambda }}{4}} )^2}$
By applying the identity ${(a + b)^2} = {a^2} + {b^2} + 2ab$ and on further solving we get,
$\Rightarrow \dfrac{{1 + {\lambda ^2} + 2\lambda }}{{36}} = \dfrac{{9 - 4\lambda }}{4}$
Again by cross multiplication and on further simplification we get,
$\Rightarrow (1 + {\lambda ^2} + 2\lambda ) = 9 \times (9 - 4\lambda )$
$ \Rightarrow {\lambda ^2} + 38\lambda - 80 = 0$
This is a quadratic equation so it must be having two roots. That means we get two values of $\lambda $ satisfying the above equation.
We get values by applying the formula $\lambda = \dfrac{{ - b \pm \sqrt D }}{{2a}}$
$\Rightarrow \lambda = \dfrac{{ - 38 - \sqrt {1764} }}{2} = \dfrac{{ - 38 - 42}}{2} = \dfrac{{ - 80}}{2} = - 40$ or
$\Rightarrow \lambda = \dfrac{{ - 38 + \sqrt {1920} }}{2} = \dfrac{{ - 38 + 42}}{2} = \dfrac{4}{2} = 2$
Hence the values of $\lambda $ are $ - 40$ and 2.
Since $\lambda $ is a non-negative real number so the value of $\lambda = 2.$
Note:
The angle between the lines represented by $a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$ is given by $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
The lines represented by $a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$ are parallel ${h^2} = ab$.
Since $\lambda $ is a non-negative real number so we will only consider the positive value of $\lambda $.
$ \Rightarrow \theta = {\tan ^{ - 1}}\left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
The lines are parallel if the angle between them is zero. Thus, the lines are parallel if $\theta = 0$
$ \Rightarrow \tan \theta = 0 \Rightarrow \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right| = 0$
$ \Rightarrow {h^2} = ab$
Complete step by step answer:
Given equation of the pair of straight lines represented by \[{x^2} - 3xy + \lambda {y^2} + 3x - 5y + 2 = 0\]…….(i)
As we know that the angle between the lines represented by $a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$ is given by $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Consider $a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$ …………..(ii)
On comparing equation (i) and (ii) we get the values as $a = 1,b = \lambda $ and $h = \dfrac{{ - 3}}{2}$.
Also the angle between the pair of straight lines represented by the equation \[{x^2} - 3xy + \lambda {y^2} + 3x - 5y + 2 = 0\] is ${\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$.
Let $\theta $ be the angle between the pair of straight lines represented by the equation
\[\Rightarrow {x^2} - 3xy + \lambda {y^2} + 3x - 5y + 2 = 0\] is ${\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$.
Therefore, $\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$………….(iii)
Now consider, $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ and
$\Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)$
From equation $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ we can find out the value of the angle $\theta $.
As $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
$ \Rightarrow \theta = {\tan ^{ - 1}}\left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ ……………..(iv)
As L.H.S of equation (iii) and (iv) are equal therefore their R.H.S are also equal therefore,
${\Rightarrow \tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) = {\tan ^{ - 1}}\left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Now substituting the values as $a = 1,b = \lambda $ and $h = \dfrac{{ - 3}}{2}$ we get,
${\Rightarrow \tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) = {\tan ^{ - 1}}\left| {\dfrac{{2\sqrt {{{\left( {\dfrac{{ - 3}}{2}} \right)}^2} - 1 \times \lambda } }}{{1 + \lambda }}} \right|$
We can cancel out ${\tan ^{ - 1}}$ from both sides. So we are now left with the equation
$\Rightarrow \dfrac{1}{3} = \dfrac{{2\sqrt {{{\left( {\dfrac{{ - 3}}{2}} \right)}^2} - \lambda } }}{{1 + \lambda }}$
Solving the numerator of R.H.S we get,
$\Rightarrow \dfrac{1}{3} = \dfrac{{2\sqrt {\dfrac{{9 - 4\lambda }}{4}} }}{{1 + \lambda }}$.
By cross multiplication we get,
$\Rightarrow \dfrac{{1 + \lambda }}{1} = \dfrac{{3 \times 2 \times \sqrt {\dfrac{{9 - 4\lambda }}{4}} }}{1}$
$ \Rightarrow \dfrac{{1 + \lambda }}{6} = \sqrt {\dfrac{{9 - 4\lambda }}{4}} $
Taking square on both sides we get,
$\Rightarrow {(\dfrac{{1 + \lambda }}{6})^2} = {(\sqrt {\dfrac{{9 - 4\lambda }}{4}} )^2}$
By applying the identity ${(a + b)^2} = {a^2} + {b^2} + 2ab$ and on further solving we get,
$\Rightarrow \dfrac{{1 + {\lambda ^2} + 2\lambda }}{{36}} = \dfrac{{9 - 4\lambda }}{4}$
Again by cross multiplication and on further simplification we get,
$\Rightarrow (1 + {\lambda ^2} + 2\lambda ) = 9 \times (9 - 4\lambda )$
$ \Rightarrow {\lambda ^2} + 38\lambda - 80 = 0$
This is a quadratic equation so it must be having two roots. That means we get two values of $\lambda $ satisfying the above equation.
We get values by applying the formula $\lambda = \dfrac{{ - b \pm \sqrt D }}{{2a}}$
$\Rightarrow \lambda = \dfrac{{ - 38 - \sqrt {1764} }}{2} = \dfrac{{ - 38 - 42}}{2} = \dfrac{{ - 80}}{2} = - 40$ or
$\Rightarrow \lambda = \dfrac{{ - 38 + \sqrt {1920} }}{2} = \dfrac{{ - 38 + 42}}{2} = \dfrac{4}{2} = 2$
Hence the values of $\lambda $ are $ - 40$ and 2.
Since $\lambda $ is a non-negative real number so the value of $\lambda = 2.$
Note:
The angle between the lines represented by $a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$ is given by $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
The lines represented by $a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$ are parallel ${h^2} = ab$.
Since $\lambda $ is a non-negative real number so we will only consider the positive value of $\lambda $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

