If the expression $\left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right)$ has a value $ \geqslant 3$. Then x should belong to-
(a) $0 \leqslant x \leqslant \dfrac{\pi }{2}$
(b) $0 \leqslant x \leqslant \pi \,$
(c) $x \in \mathbb{R},\forall x$
(d) $x \in \mathbb{R}$ excepting $x = \dfrac{{n\pi }}{2},n \in \mathbb{Z}$
Answer
Verified
482.7k+ views
Hint: In this question we will firstly try to reduce the given expression in simpler form then we will check the points where the reduced function can become not defined. Then finally we do not include those points in values of $x$.
Complete step-by-step answer:
The given expression is $\left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right) \geqslant 3$ -(1)
Let $f\left( x \right) = \left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right)$
So now solving the above expression,
$
f\left( x \right) = \left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right) \\
{\text{ = 1 - }}\cot x + {\cot ^2}x + \tan x - 1 + \cot x + {\tan ^2}x - \tan x + 1 \\
{\text{ = }}{\tan ^2}x + {\cot ^2}x + 1 \\
$ -(2)
Now using (1) and (2) we can write,
$
f\left( x \right) = {\tan ^2}x + {\cot ^2}x + 1 \geqslant 3 \\
\Rightarrow {\tan ^2}x + {\cot ^2}x \geqslant 2 \\
{\text{ }} \\
$ -(3)
So, here in (3) equation $x \in \mathbb{R}$ satisfy the equation except the points where $\tan x$ and $\cot x$ are not defined. And we know that,
$\tan x$ is not defined when $x \in \dfrac{\pi }{2} + n\pi $, $n \in \mathbb{Z}$
$\cot x$ is not defined when $x \in n\pi $, $n \in \mathbb{Z}$
So, (3) is not defined when,
$
x \in \dfrac{\pi }{2} + n\pi \cup n\pi \\
x \in \left\{ {\dfrac{\pi }{2},\dfrac{{3\pi }}{2},\dfrac{{5\pi }}{2},\dfrac{{7\pi }}{2}, - - - - } \right\} \cup \left\{ {0,\pi ,2\pi ,3\pi , - - - - } \right\} \\
x \in n\pi \\
$ ,$n \in \mathbb{Z}$
Therefore, (1) satisfies when $x \in \mathbb{R}$ excepting $x \in n\pi ,n \in \mathbb{Z}$
Hence, option (d) is the correct answer.
Note: In the above question when we got (3) equation we can further simplify it into $\sin x$ and $\cos x$. And then we can find the values of x for which equation is not defined. This would be another method to solve this question.
Complete step-by-step answer:
The given expression is $\left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right) \geqslant 3$ -(1)
Let $f\left( x \right) = \left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right)$
So now solving the above expression,
$
f\left( x \right) = \left( {1 + \tan x + {{\tan }^2}x} \right)\left( {1 - \cot x + {{\cot }^2}x} \right) \\
{\text{ = 1 - }}\cot x + {\cot ^2}x + \tan x - 1 + \cot x + {\tan ^2}x - \tan x + 1 \\
{\text{ = }}{\tan ^2}x + {\cot ^2}x + 1 \\
$ -(2)
Now using (1) and (2) we can write,
$
f\left( x \right) = {\tan ^2}x + {\cot ^2}x + 1 \geqslant 3 \\
\Rightarrow {\tan ^2}x + {\cot ^2}x \geqslant 2 \\
{\text{ }} \\
$ -(3)
So, here in (3) equation $x \in \mathbb{R}$ satisfy the equation except the points where $\tan x$ and $\cot x$ are not defined. And we know that,
$\tan x$ is not defined when $x \in \dfrac{\pi }{2} + n\pi $, $n \in \mathbb{Z}$
$\cot x$ is not defined when $x \in n\pi $, $n \in \mathbb{Z}$
So, (3) is not defined when,
$
x \in \dfrac{\pi }{2} + n\pi \cup n\pi \\
x \in \left\{ {\dfrac{\pi }{2},\dfrac{{3\pi }}{2},\dfrac{{5\pi }}{2},\dfrac{{7\pi }}{2}, - - - - } \right\} \cup \left\{ {0,\pi ,2\pi ,3\pi , - - - - } \right\} \\
x \in n\pi \\
$ ,$n \in \mathbb{Z}$
Therefore, (1) satisfies when $x \in \mathbb{R}$ excepting $x \in n\pi ,n \in \mathbb{Z}$
Hence, option (d) is the correct answer.
Note: In the above question when we got (3) equation we can further simplify it into $\sin x$ and $\cos x$. And then we can find the values of x for which equation is not defined. This would be another method to solve this question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE