
If the foot of the perpendicular from the origin to a plane is (a, b, c), the equation of the plane is.
(A) $\dfrac{x}{\text{a}}+\dfrac{\text{y}}{\text{b}}+\dfrac{\text{z}}{\text{c}}=3$
(B) ax + by + cz = 3
(C) ax + by + cz = ${{\text{a}}^{2}}+{{\text{b}}^{2}}+{{\text{c}}^{2}}$
(D) ax + by + cz = a + b + c
Answer
593.4k+ views
Hint: Hint! Let the foot of perpendicular be p(a, b, c). Then directions ratio of OP are (a − 0, b − 0, c − 0) = (a, b c) then, direction ratios of the normal to a, b, c is
a(x − a) + b(y − b) + c(z − c) = 0
Complete step by step solution: Given that,
the foot of the perpendicular from the origin to a plane is (a, b, c).
Now,
According to the question.
⇒ Let the foot of the perpendicular be P(a, b, c).
Then,
⇒ direction ratios of OP are (a − 0, b − 0, c − 0) = (a, b, c).
So,
⇒ the equation of plane passing through P(a, b, c)
then,
the direction ratios of the normal to which are a, b, c is
$\text{d}\cdot {{\text{r}}_{8}}(x-{{x}_{1}})+\text{d}\cdot \text{r}(\text{y}-{{\text{y}}_{1}})+\text{d}\cdot {{\text{r}}_{8}}(\text{z}-{{\text{z}}_{1}})=0$
where,
${{x}_{1}}$ = x-co-ordinates of point P.
${{\text{y}}_{1}}$ = y-co-ordinates of point P.
${{\text{z}}_{1}}$ = z-co-ordinates of point P.
Now,
⇒ Here, \[{{x}_{1}}=\text{a}\], \[{{\text{y}}_{1}}=\text{b}\], \[{{\text{z}}_{1}}=\text{c}\].
So,
⇒ a(x − a) + b(y − b) + c(z − c) = 0
⇒ After multiplying, we get;
⇒ $\text{a}x-{{\text{a}}^{2}}+\text{by}-{{\text{b}}^{2}}+\text{cz}-{{\text{c}}^{2}}=0$
⇒ ax + by + cz = ${{\text{a}}^{2}}+{{\text{b}}^{2}}+{{\text{c}}^{2}}$.
Hence, the correct option is (C).
Note: In this type of question we know about the direction ratios that is If a, b, c are three numbers proportional to the direction cosine l, m, n of a straight line, then a, b, c are called its direction ratios..then, First, find out the direction ratios of line and then find direction ratios of the normal to point (a, b, c)
= $\text{d}\cdot {{\text{r}}_{8}}(x-{{x}_{1}})+\text{d}\cdot {{\text{r}}_{8}}(\text{y}-{{\text{y}}_{1}})+\text{d}\cdot {{\text{r}}_{8}}(\text{z}-{{\text{z}}_{1}})=0$
a(x − a) + b(y − b) + c(z − c) = 0
Complete step by step solution: Given that,
the foot of the perpendicular from the origin to a plane is (a, b, c).
Now,
According to the question.
⇒ Let the foot of the perpendicular be P(a, b, c).
Then,
⇒ direction ratios of OP are (a − 0, b − 0, c − 0) = (a, b, c).
So,
⇒ the equation of plane passing through P(a, b, c)
then,
the direction ratios of the normal to which are a, b, c is
$\text{d}\cdot {{\text{r}}_{8}}(x-{{x}_{1}})+\text{d}\cdot \text{r}(\text{y}-{{\text{y}}_{1}})+\text{d}\cdot {{\text{r}}_{8}}(\text{z}-{{\text{z}}_{1}})=0$
where,
${{x}_{1}}$ = x-co-ordinates of point P.
${{\text{y}}_{1}}$ = y-co-ordinates of point P.
${{\text{z}}_{1}}$ = z-co-ordinates of point P.
Now,
⇒ Here, \[{{x}_{1}}=\text{a}\], \[{{\text{y}}_{1}}=\text{b}\], \[{{\text{z}}_{1}}=\text{c}\].
So,
⇒ a(x − a) + b(y − b) + c(z − c) = 0
⇒ After multiplying, we get;
⇒ $\text{a}x-{{\text{a}}^{2}}+\text{by}-{{\text{b}}^{2}}+\text{cz}-{{\text{c}}^{2}}=0$
⇒ ax + by + cz = ${{\text{a}}^{2}}+{{\text{b}}^{2}}+{{\text{c}}^{2}}$.
Hence, the correct option is (C).
Note: In this type of question we know about the direction ratios that is If a, b, c are three numbers proportional to the direction cosine l, m, n of a straight line, then a, b, c are called its direction ratios..then, First, find out the direction ratios of line and then find direction ratios of the normal to point (a, b, c)
= $\text{d}\cdot {{\text{r}}_{8}}(x-{{x}_{1}})+\text{d}\cdot {{\text{r}}_{8}}(\text{y}-{{\text{y}}_{1}})+\text{d}\cdot {{\text{r}}_{8}}(\text{z}-{{\text{z}}_{1}})=0$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

