
If the function $f\left( x \right)=\sin \left( \log x \right)-\cos \left( \log x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$ then the value of $-500\cos \left( \mu -\lambda \right)$.
Answer
484.2k+ views
Hint: We will first find the differentiation of the given function as we have given that the function strictly increases in the interval. Form that condition we will find the range of $x$ and we equate the result range with the given range to find the values of $\lambda ,\mu $ from that values we can find the required value of $-500\cos \left( \mu -\lambda \right)$
Complete step by step answer:
Given that, $f\left( x \right)=\sin \left( \log x \right)-\cos \left( \log x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
${{f}^{'}}\left( x \right)\text{ }>\text{ }0$
The value of ${{f}^{'}}\left( x \right)$ is
$\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ \sin \left( \log x \right)-\cos \left( \log x \right) \right] \\
& =\dfrac{d}{dx}\left[ \sin \left( \log x \right) \right]-\dfrac{d}{dx}\left[ \cos \left( \log x \right) \right]
\end{align}$
Use the formulas $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$ in the above equation, then
${{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{d}{dx}\left( \log x \right)+\sin \left( \log x \right)\dfrac{d}{dx}\left( \log x \right)$
Use the formula $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$, then
$\begin{align}
& {{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{1}{x}+\sin \left( \log x \right).\dfrac{1}{x} \\
& =\dfrac{1}{x}\left[ \cos \left( \log x \right)+\sin \left( \log x \right) \right]
\end{align}$
if the function $f\left( x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
$\begin{align}
& {{f}^{'}}\left( x \right)\text{ }>\text{ }0 \\
& \dfrac{1}{x}\left[ \sin \left( \log x \right)+\cos \left( \log x \right) \right]\text{ }>\text{ }0 \\
& \sin \left( \log x \right)+\cos \left( \log x \right)\text{ }>\text{ }0
\end{align}$
Multiply and divide by $\sqrt{2}$ in the above expression, then we have
$\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\sin \left( \log x \right)+\dfrac{1}{\sqrt{2}}\cos \left( \log x \right) \right)\text{ }>\text{ }0$
Substituting $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$in the above expression, then
$\cos \dfrac{\pi }{4}.\sin \left( \log x \right)+\sin \dfrac{\pi }{4}\cos \left( \log x \right)\text{ }>\text{ }0$
Using the formula $\sin x.\cos y+\cos x.\sin y=\sin \left( x+y \right)$ in the above expression, then we have
$\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
The graph of $y=\sin x$ is given below
Form the above equation we have value of $\sin x\text{ }>\text{ }0$ for $0\text{ }<\text{ }x\text{ }<\text{ }\pi $, so the value of $\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
For
$\begin{align}
& 0\text{ }<\text{ }\dfrac{\pi }{4}+\log x\text{ }<\text{ }\pi \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\pi -\dfrac{\pi }{4} \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\dfrac{3\pi }{4} \\
& {{e}^{-\dfrac{\pi }{4}}}\text{ }<\text{ }x\text{ }<\text{ }{{e}^{\dfrac{3\pi }{4}}}
\end{align}$
$\therefore $$x\in \left( {{e}^{-\dfrac{\pi }{4}}},{{e}^{\dfrac{3\pi }{4}}} \right)$
But given that $x\in \left( {{e}^{\lambda }},{{e}^{\mu }} \right)$ hence the values of $\lambda ,\mu $ are
$\lambda =-\dfrac{\pi }{4}$ and $\mu =\dfrac{3\pi }{4}$
Now the value of $-500\cos \left( \mu -\lambda \right)$ is
$\begin{align}
& -500\cos \left( \mu -\lambda \right)=-500\cos \left( \dfrac{3\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right) \\
& =-500\cos \left( \dfrac{3\pi }{4}+\dfrac{\pi }{4} \right) \\
& =-500\cos \pi \\
& =-500\left( -1 \right) \\
& =500
\end{align}$
Note: Please take the limits of $x$ for $\sin x\text{ }>\text{ }0$ as $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. We have other ranges also for $x$ but it is the basic to consider the range from $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. Be aware of the operations that we follow to simplify the range. The derivative of $\log x$ is $\dfrac{1}{x}$, mathematically $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$ and the differentiation of the functions like $f\left( g\left( x \right) \right)$ is given by $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)$
Complete step by step answer:
Given that, $f\left( x \right)=\sin \left( \log x \right)-\cos \left( \log x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
${{f}^{'}}\left( x \right)\text{ }>\text{ }0$
The value of ${{f}^{'}}\left( x \right)$ is
$\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ \sin \left( \log x \right)-\cos \left( \log x \right) \right] \\
& =\dfrac{d}{dx}\left[ \sin \left( \log x \right) \right]-\dfrac{d}{dx}\left[ \cos \left( \log x \right) \right]
\end{align}$
Use the formulas $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$ in the above equation, then
${{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{d}{dx}\left( \log x \right)+\sin \left( \log x \right)\dfrac{d}{dx}\left( \log x \right)$
Use the formula $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$, then
$\begin{align}
& {{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{1}{x}+\sin \left( \log x \right).\dfrac{1}{x} \\
& =\dfrac{1}{x}\left[ \cos \left( \log x \right)+\sin \left( \log x \right) \right]
\end{align}$
if the function $f\left( x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
$\begin{align}
& {{f}^{'}}\left( x \right)\text{ }>\text{ }0 \\
& \dfrac{1}{x}\left[ \sin \left( \log x \right)+\cos \left( \log x \right) \right]\text{ }>\text{ }0 \\
& \sin \left( \log x \right)+\cos \left( \log x \right)\text{ }>\text{ }0
\end{align}$
Multiply and divide by $\sqrt{2}$ in the above expression, then we have
$\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\sin \left( \log x \right)+\dfrac{1}{\sqrt{2}}\cos \left( \log x \right) \right)\text{ }>\text{ }0$
Substituting $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$in the above expression, then
$\cos \dfrac{\pi }{4}.\sin \left( \log x \right)+\sin \dfrac{\pi }{4}\cos \left( \log x \right)\text{ }>\text{ }0$
Using the formula $\sin x.\cos y+\cos x.\sin y=\sin \left( x+y \right)$ in the above expression, then we have
$\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
The graph of $y=\sin x$ is given below

Form the above equation we have value of $\sin x\text{ }>\text{ }0$ for $0\text{ }<\text{ }x\text{ }<\text{ }\pi $, so the value of $\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
For
$\begin{align}
& 0\text{ }<\text{ }\dfrac{\pi }{4}+\log x\text{ }<\text{ }\pi \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\pi -\dfrac{\pi }{4} \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\dfrac{3\pi }{4} \\
& {{e}^{-\dfrac{\pi }{4}}}\text{ }<\text{ }x\text{ }<\text{ }{{e}^{\dfrac{3\pi }{4}}}
\end{align}$
$\therefore $$x\in \left( {{e}^{-\dfrac{\pi }{4}}},{{e}^{\dfrac{3\pi }{4}}} \right)$
But given that $x\in \left( {{e}^{\lambda }},{{e}^{\mu }} \right)$ hence the values of $\lambda ,\mu $ are
$\lambda =-\dfrac{\pi }{4}$ and $\mu =\dfrac{3\pi }{4}$
Now the value of $-500\cos \left( \mu -\lambda \right)$ is
$\begin{align}
& -500\cos \left( \mu -\lambda \right)=-500\cos \left( \dfrac{3\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right) \\
& =-500\cos \left( \dfrac{3\pi }{4}+\dfrac{\pi }{4} \right) \\
& =-500\cos \pi \\
& =-500\left( -1 \right) \\
& =500
\end{align}$
Note: Please take the limits of $x$ for $\sin x\text{ }>\text{ }0$ as $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. We have other ranges also for $x$ but it is the basic to consider the range from $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. Be aware of the operations that we follow to simplify the range. The derivative of $\log x$ is $\dfrac{1}{x}$, mathematically $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$ and the differentiation of the functions like $f\left( g\left( x \right) \right)$ is given by $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

The final image formed by a compound microscope is class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE

Which of the following properties of a proton can change class 12 physics CBSE

Sum of two skew symmetric matrices is always matri class 12 maths CBSE
