
If the function $f\left( x \right)=\sin \left( \log x \right)-\cos \left( \log x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$ then the value of $-500\cos \left( \mu -\lambda \right)$.
Answer
582.9k+ views
Hint: We will first find the differentiation of the given function as we have given that the function strictly increases in the interval. Form that condition we will find the range of $x$ and we equate the result range with the given range to find the values of $\lambda ,\mu $ from that values we can find the required value of $-500\cos \left( \mu -\lambda \right)$
Complete step by step answer:
Given that, $f\left( x \right)=\sin \left( \log x \right)-\cos \left( \log x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
${{f}^{'}}\left( x \right)\text{ }>\text{ }0$
The value of ${{f}^{'}}\left( x \right)$ is
$\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ \sin \left( \log x \right)-\cos \left( \log x \right) \right] \\
& =\dfrac{d}{dx}\left[ \sin \left( \log x \right) \right]-\dfrac{d}{dx}\left[ \cos \left( \log x \right) \right]
\end{align}$
Use the formulas $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$ in the above equation, then
${{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{d}{dx}\left( \log x \right)+\sin \left( \log x \right)\dfrac{d}{dx}\left( \log x \right)$
Use the formula $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$, then
$\begin{align}
& {{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{1}{x}+\sin \left( \log x \right).\dfrac{1}{x} \\
& =\dfrac{1}{x}\left[ \cos \left( \log x \right)+\sin \left( \log x \right) \right]
\end{align}$
if the function $f\left( x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
$\begin{align}
& {{f}^{'}}\left( x \right)\text{ }>\text{ }0 \\
& \dfrac{1}{x}\left[ \sin \left( \log x \right)+\cos \left( \log x \right) \right]\text{ }>\text{ }0 \\
& \sin \left( \log x \right)+\cos \left( \log x \right)\text{ }>\text{ }0
\end{align}$
Multiply and divide by $\sqrt{2}$ in the above expression, then we have
$\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\sin \left( \log x \right)+\dfrac{1}{\sqrt{2}}\cos \left( \log x \right) \right)\text{ }>\text{ }0$
Substituting $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$in the above expression, then
$\cos \dfrac{\pi }{4}.\sin \left( \log x \right)+\sin \dfrac{\pi }{4}\cos \left( \log x \right)\text{ }>\text{ }0$
Using the formula $\sin x.\cos y+\cos x.\sin y=\sin \left( x+y \right)$ in the above expression, then we have
$\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
The graph of $y=\sin x$ is given below
Form the above equation we have value of $\sin x\text{ }>\text{ }0$ for $0\text{ }<\text{ }x\text{ }<\text{ }\pi $, so the value of $\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
For
$\begin{align}
& 0\text{ }<\text{ }\dfrac{\pi }{4}+\log x\text{ }<\text{ }\pi \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\pi -\dfrac{\pi }{4} \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\dfrac{3\pi }{4} \\
& {{e}^{-\dfrac{\pi }{4}}}\text{ }<\text{ }x\text{ }<\text{ }{{e}^{\dfrac{3\pi }{4}}}
\end{align}$
$\therefore $$x\in \left( {{e}^{-\dfrac{\pi }{4}}},{{e}^{\dfrac{3\pi }{4}}} \right)$
But given that $x\in \left( {{e}^{\lambda }},{{e}^{\mu }} \right)$ hence the values of $\lambda ,\mu $ are
$\lambda =-\dfrac{\pi }{4}$ and $\mu =\dfrac{3\pi }{4}$
Now the value of $-500\cos \left( \mu -\lambda \right)$ is
$\begin{align}
& -500\cos \left( \mu -\lambda \right)=-500\cos \left( \dfrac{3\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right) \\
& =-500\cos \left( \dfrac{3\pi }{4}+\dfrac{\pi }{4} \right) \\
& =-500\cos \pi \\
& =-500\left( -1 \right) \\
& =500
\end{align}$
Note: Please take the limits of $x$ for $\sin x\text{ }>\text{ }0$ as $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. We have other ranges also for $x$ but it is the basic to consider the range from $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. Be aware of the operations that we follow to simplify the range. The derivative of $\log x$ is $\dfrac{1}{x}$, mathematically $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$ and the differentiation of the functions like $f\left( g\left( x \right) \right)$ is given by $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)$
Complete step by step answer:
Given that, $f\left( x \right)=\sin \left( \log x \right)-\cos \left( \log x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
${{f}^{'}}\left( x \right)\text{ }>\text{ }0$
The value of ${{f}^{'}}\left( x \right)$ is
$\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ \sin \left( \log x \right)-\cos \left( \log x \right) \right] \\
& =\dfrac{d}{dx}\left[ \sin \left( \log x \right) \right]-\dfrac{d}{dx}\left[ \cos \left( \log x \right) \right]
\end{align}$
Use the formulas $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$ in the above equation, then
${{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{d}{dx}\left( \log x \right)+\sin \left( \log x \right)\dfrac{d}{dx}\left( \log x \right)$
Use the formula $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$, then
$\begin{align}
& {{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{1}{x}+\sin \left( \log x \right).\dfrac{1}{x} \\
& =\dfrac{1}{x}\left[ \cos \left( \log x \right)+\sin \left( \log x \right) \right]
\end{align}$
if the function $f\left( x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
$\begin{align}
& {{f}^{'}}\left( x \right)\text{ }>\text{ }0 \\
& \dfrac{1}{x}\left[ \sin \left( \log x \right)+\cos \left( \log x \right) \right]\text{ }>\text{ }0 \\
& \sin \left( \log x \right)+\cos \left( \log x \right)\text{ }>\text{ }0
\end{align}$
Multiply and divide by $\sqrt{2}$ in the above expression, then we have
$\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\sin \left( \log x \right)+\dfrac{1}{\sqrt{2}}\cos \left( \log x \right) \right)\text{ }>\text{ }0$
Substituting $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$in the above expression, then
$\cos \dfrac{\pi }{4}.\sin \left( \log x \right)+\sin \dfrac{\pi }{4}\cos \left( \log x \right)\text{ }>\text{ }0$
Using the formula $\sin x.\cos y+\cos x.\sin y=\sin \left( x+y \right)$ in the above expression, then we have
$\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
The graph of $y=\sin x$ is given below
Form the above equation we have value of $\sin x\text{ }>\text{ }0$ for $0\text{ }<\text{ }x\text{ }<\text{ }\pi $, so the value of $\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
For
$\begin{align}
& 0\text{ }<\text{ }\dfrac{\pi }{4}+\log x\text{ }<\text{ }\pi \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\pi -\dfrac{\pi }{4} \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\dfrac{3\pi }{4} \\
& {{e}^{-\dfrac{\pi }{4}}}\text{ }<\text{ }x\text{ }<\text{ }{{e}^{\dfrac{3\pi }{4}}}
\end{align}$
$\therefore $$x\in \left( {{e}^{-\dfrac{\pi }{4}}},{{e}^{\dfrac{3\pi }{4}}} \right)$
But given that $x\in \left( {{e}^{\lambda }},{{e}^{\mu }} \right)$ hence the values of $\lambda ,\mu $ are
$\lambda =-\dfrac{\pi }{4}$ and $\mu =\dfrac{3\pi }{4}$
Now the value of $-500\cos \left( \mu -\lambda \right)$ is
$\begin{align}
& -500\cos \left( \mu -\lambda \right)=-500\cos \left( \dfrac{3\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right) \\
& =-500\cos \left( \dfrac{3\pi }{4}+\dfrac{\pi }{4} \right) \\
& =-500\cos \pi \\
& =-500\left( -1 \right) \\
& =500
\end{align}$
Note: Please take the limits of $x$ for $\sin x\text{ }>\text{ }0$ as $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. We have other ranges also for $x$ but it is the basic to consider the range from $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. Be aware of the operations that we follow to simplify the range. The derivative of $\log x$ is $\dfrac{1}{x}$, mathematically $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$ and the differentiation of the functions like $f\left( g\left( x \right) \right)$ is given by $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

