Answer
Verified
459.3k+ views
Hint: We will first find the differentiation of the given function as we have given that the function strictly increases in the interval. Form that condition we will find the range of $x$ and we equate the result range with the given range to find the values of $\lambda ,\mu $ from that values we can find the required value of $-500\cos \left( \mu -\lambda \right)$
Complete step by step answer:
Given that, $f\left( x \right)=\sin \left( \log x \right)-\cos \left( \log x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
${{f}^{'}}\left( x \right)\text{ }>\text{ }0$
The value of ${{f}^{'}}\left( x \right)$ is
$\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ \sin \left( \log x \right)-\cos \left( \log x \right) \right] \\
& =\dfrac{d}{dx}\left[ \sin \left( \log x \right) \right]-\dfrac{d}{dx}\left[ \cos \left( \log x \right) \right]
\end{align}$
Use the formulas $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$ in the above equation, then
${{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{d}{dx}\left( \log x \right)+\sin \left( \log x \right)\dfrac{d}{dx}\left( \log x \right)$
Use the formula $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$, then
$\begin{align}
& {{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{1}{x}+\sin \left( \log x \right).\dfrac{1}{x} \\
& =\dfrac{1}{x}\left[ \cos \left( \log x \right)+\sin \left( \log x \right) \right]
\end{align}$
if the function $f\left( x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
$\begin{align}
& {{f}^{'}}\left( x \right)\text{ }>\text{ }0 \\
& \dfrac{1}{x}\left[ \sin \left( \log x \right)+\cos \left( \log x \right) \right]\text{ }>\text{ }0 \\
& \sin \left( \log x \right)+\cos \left( \log x \right)\text{ }>\text{ }0
\end{align}$
Multiply and divide by $\sqrt{2}$ in the above expression, then we have
$\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\sin \left( \log x \right)+\dfrac{1}{\sqrt{2}}\cos \left( \log x \right) \right)\text{ }>\text{ }0$
Substituting $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$in the above expression, then
$\cos \dfrac{\pi }{4}.\sin \left( \log x \right)+\sin \dfrac{\pi }{4}\cos \left( \log x \right)\text{ }>\text{ }0$
Using the formula $\sin x.\cos y+\cos x.\sin y=\sin \left( x+y \right)$ in the above expression, then we have
$\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
The graph of $y=\sin x$ is given below
Form the above equation we have value of $\sin x\text{ }>\text{ }0$ for $0\text{ }<\text{ }x\text{ }<\text{ }\pi $, so the value of $\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
For
$\begin{align}
& 0\text{ }<\text{ }\dfrac{\pi }{4}+\log x\text{ }<\text{ }\pi \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\pi -\dfrac{\pi }{4} \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\dfrac{3\pi }{4} \\
& {{e}^{-\dfrac{\pi }{4}}}\text{ }<\text{ }x\text{ }<\text{ }{{e}^{\dfrac{3\pi }{4}}}
\end{align}$
$\therefore $$x\in \left( {{e}^{-\dfrac{\pi }{4}}},{{e}^{\dfrac{3\pi }{4}}} \right)$
But given that $x\in \left( {{e}^{\lambda }},{{e}^{\mu }} \right)$ hence the values of $\lambda ,\mu $ are
$\lambda =-\dfrac{\pi }{4}$ and $\mu =\dfrac{3\pi }{4}$
Now the value of $-500\cos \left( \mu -\lambda \right)$ is
$\begin{align}
& -500\cos \left( \mu -\lambda \right)=-500\cos \left( \dfrac{3\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right) \\
& =-500\cos \left( \dfrac{3\pi }{4}+\dfrac{\pi }{4} \right) \\
& =-500\cos \pi \\
& =-500\left( -1 \right) \\
& =500
\end{align}$
Note: Please take the limits of $x$ for $\sin x\text{ }>\text{ }0$ as $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. We have other ranges also for $x$ but it is the basic to consider the range from $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. Be aware of the operations that we follow to simplify the range. The derivative of $\log x$ is $\dfrac{1}{x}$, mathematically $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$ and the differentiation of the functions like $f\left( g\left( x \right) \right)$ is given by $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)$
Complete step by step answer:
Given that, $f\left( x \right)=\sin \left( \log x \right)-\cos \left( \log x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
${{f}^{'}}\left( x \right)\text{ }>\text{ }0$
The value of ${{f}^{'}}\left( x \right)$ is
$\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ \sin \left( \log x \right)-\cos \left( \log x \right) \right] \\
& =\dfrac{d}{dx}\left[ \sin \left( \log x \right) \right]-\dfrac{d}{dx}\left[ \cos \left( \log x \right) \right]
\end{align}$
Use the formulas $\dfrac{d}{dx}\left( \sin x \right)=\cos x$, $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$ in the above equation, then
${{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{d}{dx}\left( \log x \right)+\sin \left( \log x \right)\dfrac{d}{dx}\left( \log x \right)$
Use the formula $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$, then
$\begin{align}
& {{f}^{'}}\left( x \right)=\cos \left( \log x \right).\dfrac{1}{x}+\sin \left( \log x \right).\dfrac{1}{x} \\
& =\dfrac{1}{x}\left[ \cos \left( \log x \right)+\sin \left( \log x \right) \right]
\end{align}$
if the function $f\left( x \right)$ strictly increase in the interval $\left( {{e}^{\lambda }},{{e}^{\mu }} \right)$, then
$\begin{align}
& {{f}^{'}}\left( x \right)\text{ }>\text{ }0 \\
& \dfrac{1}{x}\left[ \sin \left( \log x \right)+\cos \left( \log x \right) \right]\text{ }>\text{ }0 \\
& \sin \left( \log x \right)+\cos \left( \log x \right)\text{ }>\text{ }0
\end{align}$
Multiply and divide by $\sqrt{2}$ in the above expression, then we have
$\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\sin \left( \log x \right)+\dfrac{1}{\sqrt{2}}\cos \left( \log x \right) \right)\text{ }>\text{ }0$
Substituting $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$in the above expression, then
$\cos \dfrac{\pi }{4}.\sin \left( \log x \right)+\sin \dfrac{\pi }{4}\cos \left( \log x \right)\text{ }>\text{ }0$
Using the formula $\sin x.\cos y+\cos x.\sin y=\sin \left( x+y \right)$ in the above expression, then we have
$\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
The graph of $y=\sin x$ is given below
Form the above equation we have value of $\sin x\text{ }>\text{ }0$ for $0\text{ }<\text{ }x\text{ }<\text{ }\pi $, so the value of $\sin \left( \dfrac{\pi }{4}+\log x \right)\text{ }>\text{ }0$
For
$\begin{align}
& 0\text{ }<\text{ }\dfrac{\pi }{4}+\log x\text{ }<\text{ }\pi \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\pi -\dfrac{\pi }{4} \\
& -\dfrac{\pi }{4}\text{ }<\text{ }\log x\text{ }<\text{ }\dfrac{3\pi }{4} \\
& {{e}^{-\dfrac{\pi }{4}}}\text{ }<\text{ }x\text{ }<\text{ }{{e}^{\dfrac{3\pi }{4}}}
\end{align}$
$\therefore $$x\in \left( {{e}^{-\dfrac{\pi }{4}}},{{e}^{\dfrac{3\pi }{4}}} \right)$
But given that $x\in \left( {{e}^{\lambda }},{{e}^{\mu }} \right)$ hence the values of $\lambda ,\mu $ are
$\lambda =-\dfrac{\pi }{4}$ and $\mu =\dfrac{3\pi }{4}$
Now the value of $-500\cos \left( \mu -\lambda \right)$ is
$\begin{align}
& -500\cos \left( \mu -\lambda \right)=-500\cos \left( \dfrac{3\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right) \\
& =-500\cos \left( \dfrac{3\pi }{4}+\dfrac{\pi }{4} \right) \\
& =-500\cos \pi \\
& =-500\left( -1 \right) \\
& =500
\end{align}$
Note: Please take the limits of $x$ for $\sin x\text{ }>\text{ }0$ as $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. We have other ranges also for $x$ but it is the basic to consider the range from $0\text{ }<\text{ }x\text{ }<\text{ }\pi $. Be aware of the operations that we follow to simplify the range. The derivative of $\log x$ is $\dfrac{1}{x}$, mathematically $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$ and the differentiation of the functions like $f\left( g\left( x \right) \right)$ is given by $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers